Solutions to First Examination
 10:00 a.m. Edition

1. (a) The vector $\mathbf{d}=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}$ is parallel to the plane p. Since the points $(3,2,5)$ and $(1,1,1)=\mathbf{i}+\mathbf{j}+\mathbf{k}$ lie in the plane, the difference vector $2 \mathbf{i}+\mathbf{j}+4 \mathbf{k}$ is parallel to the plane. Therefore to find a normal vector to the plane, take the cross product

$$
\mathbf{N}=\mathbf{d} \times(2 \mathbf{i}+\mathbf{j}+4 \mathbf{k})=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 2 & 3 \\
2 & 1 & 4
\end{array}\right|=5 \mathbf{i}+2 \mathbf{j}-3 \mathbf{k} .
$$

(Any nonzero multiple of this will do.) (b) Then the equation of the plane p is $(\mathbf{r}-\mathbf{i}-$ $\mathbf{j}-\mathbf{k}) \cdot \mathbf{N}=0$, where $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$, which expands to $5(x-1)+2(y-1)-3(z-1)=0$, which simplifies to $5 x+2 y-3 z=4$. (Again, any nonzero multiple of this will do.)
2. P is the point $(1,1,0)=\mathbf{i}+\mathbf{j}$. For (a), differentiate:

$$
\mathbf{r}^{\prime}(t)=2 t \mathbf{i}+\left(3 t^{2}-2\right) \mathbf{j}+\left(4 t^{3}-2\right) \mathbf{k}
$$

and set $t=1$, to get $\mathbf{v}=2 \mathbf{i}+\mathbf{j}+2 \mathbf{k}$ as a tangent vector. Then $\|\mathbf{v}\|=\sqrt{4+1+4}=$ $\sqrt{9}=3$, so that the unit tangent vector is $\mathbf{T}=\mathbf{v} / 3=(2 / 3) \mathbf{i}+(1 / 3) \mathbf{j}+(2 / 3) \mathbf{k}$. Then for (b), the parametric equation of the tangent line at P is

$$
\mathbf{R}(u)=\mathbf{i}+\mathbf{j}+u \mathbf{v}=\mathbf{i}+\mathbf{j}+u(2 \mathbf{i}+\mathbf{j}+2 \mathbf{k}) .
$$

(Or we could replace \mathbf{v} by \mathbf{T} here.)
3. (a) First compute the derivative

$$
\mathbf{r}^{\prime}(t)=2 t^{2} \mathbf{i}+2 t \mathbf{j}+\mathbf{k}
$$

Its norm was cooked to work out nicely,

$$
\left\|\mathbf{r}^{\prime}(t)\right\|=\sqrt{4 t^{4}+4 t^{2}+1}=2 t^{2}+1
$$

The relevant values of t are $-1 \leq t \leq 2$ (look at the \mathbf{k}-component of $\mathbf{r}(t)$). Then the arc length is

$$
\int_{-1}^{2}\left(2 t^{2}+1\right) d t=\left[2 t^{3} / 3+t\right]_{-1}^{2}=16 / 3+2-(-2 / 3-1)=9 .
$$

(b) The direct distance $Q R$ is $\sqrt{6^{2}+3^{2}+3^{2}}=\sqrt{54}$.
4. (a) First compute $\|\mathbf{a}\|=\sqrt{4+1+1}=\sqrt{6}$ and $\|\mathbf{b}\|=\sqrt{1+1+1}=\sqrt{3}$. The dot product is $\mathbf{a} \cdot \mathbf{b}=2-1+1=2$. If the angle between the vectors is θ,

$$
\cos \theta=(\mathbf{a} \cdot \mathbf{b}) /\|\mathbf{a}\|\|\mathbf{b}\|=2 / \sqrt{3} \sqrt{6}=\sqrt{2} / 3
$$

So $\theta=\cos ^{-1}(\sqrt{2} / 3)$ (which does not simplify). In (b), the angle is simply $\pi-\theta=$ $\pi-\cos ^{-1}(\sqrt{2} / 3)=\cos ^{-1}(-\sqrt{2} / 3)$.

