Solutions to First Examination

11:00 a.m. Edition
11. The relevant values of t are $0 \leq t \leq 3$ (look at the \mathbf{k}-component of $\mathbf{r}(t)$). Differentiate,

$$
\mathbf{r}^{\prime}(t)=t^{2} \mathbf{i}+2 t \mathbf{j}+2 \mathbf{k}
$$

Its norm has been cooked to work out nicely,

$$
\left\|\mathbf{r}^{\prime}(t)\right\|=\sqrt{t^{4}+4 t^{2}+4}=t^{2}+2
$$

Then the arc length is

$$
\int_{0}^{3}\left(t^{2}+2\right) d t=\left[t^{3} / 3+2 t\right]_{0}^{3}=9+6=15
$$

12. Call these points P_{1}, P_{2} and P_{3}. Then the difference vectors $\overrightarrow{P_{1} P_{2}}=\mathbf{i}+\mathbf{j}+3 \mathbf{k}$, $\overrightarrow{P_{1} P_{3}}=2 \mathbf{i}+3 \mathbf{j}+2 \mathbf{k}$ (and $\overrightarrow{P_{2} P_{3}}=\mathbf{i}+2 \mathbf{j}-\mathbf{k}$) are parallel to the plane p. (a) A normal vector to the plane is

$$
\mathbf{N}=\overrightarrow{P_{1} P_{2}} \times \overrightarrow{P_{1} P_{3}}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 1 & 3 \\
2 & 3 & 2
\end{array}\right|=-7 \mathbf{i}+4 \mathbf{j}+\mathbf{k}
$$

(b) The equation of p is $\mathbf{N} \bullet\left(\mathbf{r}-\overrightarrow{O P_{1}}\right)=0$, where $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$, which reduces to $-7 x+4 y+z=7$. (Check that the constant term makes P_{1} lie on p.) (Any nonzero multiple of this equation or \mathbf{N} will do.)
13. (a) Compute the norms $\|\mathbf{a}\|=\sqrt{1+4+4}=3$ and $\|\mathbf{b}\|=\sqrt{1+1+9}=\sqrt{11}$. The dot product is $\mathbf{a} \cdot \mathbf{b}=1+2+6=9$. So if the angle is θ,

$$
\cos \theta=\mathbf{a} \cdot \mathbf{b} /\|\mathbf{a}\|\|\mathbf{b}\|=9 / 3 \sqrt{11}=3 / \sqrt{11}
$$

and $\theta=\cos ^{-1}(3 / \sqrt{11})$. (b) Compute $2 \mathbf{a}-\mathbf{b}=2(\mathbf{i}+2 \mathbf{j}+2 \mathbf{k})-(\mathbf{i}+\mathbf{j}+3 \mathbf{k})=\mathbf{i}+3 \mathbf{j}+\mathbf{k}$. Its norm is $\sqrt{1+9+1}=\sqrt{11}$.
14. At $P, t=1$ (from the \mathbf{k}-component). (a) Differentiate, to get

$$
\mathbf{r}^{\prime}(t)=(2 t-1) \mathbf{i}+\left(-3 t^{2}+1\right) \mathbf{j}+2 \mathbf{k}
$$

Then $\mathbf{r}^{\prime}(1)=\mathbf{i}-2 \mathbf{j}+2 \mathbf{k}$, with norm $\left\|\mathbf{r}^{\prime}(1)\right\|=\sqrt{1+4+4}=\sqrt{9}=3$. So the unit tangent vector at P is $\mathbf{T}=\mathbf{r}^{\prime}(1) / 3=(1 / 3) \mathbf{i}-(2 / 3) \mathbf{j}+(2 / 3) \mathbf{k}$. (b) The tangent line to E at $P=\mathbf{i}+\mathbf{j}+\mathbf{k}$ is

$$
\mathbf{R}(u)=\mathbf{i}+\mathbf{j}+\mathbf{k}+u \mathbf{T}=\mathbf{i}+\mathbf{j}+\mathbf{k}+u((1 / 3) \mathbf{i}-(2 / 3) \mathbf{j}+(2 / 3) \mathbf{k}),
$$

or we can replace \mathbf{T} here by $\mathbf{r}^{\prime}(1)$.

