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Abstract

In [Wi75], for each k, the H-space that represents Brown–Peterson cohomol-
ogy BP k(−) was split into indecomposable factors, which have torsion-free ho-
motopy and homology. Here, we do the same for the related spectrum P (n), by
constructing idempotent operations in P (n)-cohomology P (n)k(−) in the style
of [BJW95]; this relies heavily on the Ravenel–Wilson determination [RW96]
of the relevant Hopf ring. The resulting (i−1)-connected H-spaces Yi have free
connective Morava K-homology k(n)∗(Yi), and may be built from the spaces in
the Ω-spectrum for k(n) using only vn-torsion invariants.

We also extend Quillen’s theorem on complex cobordism to show that for
any space X, the P (n)∗-module P (n)∗(X) is generated by elements of P (n)i(X)
for i ≥ 0. This result is essential for the work of Ravenel–Wilson–Yagita
[RWY98], which in many cases allows one to compute BP -cohomology from
Morava K-theory.

Introduction

We exploit the close relationship between the connective Morava K-theory spec-
trum k(n), whose coefficient ring is k(n)∗ = Fp[vn], and the spectrum P (n) with
P (n)∗ = Fp[vn, vn+1, vn+2, . . .], where Fp denotes the field with p elements. These
ring spectra are defined for each prime p (suppressed from almost all the notation)
and integer n ≥ 0. Most of our work generalizes the case n = 0 (see [Wi75]), where
k(0) = H(Z(p)), the Eilenberg–Mac Lane spectrum for Z(p) (the integers localized at
p), and P (0) = BP , the Brown–Peterson spectrum, with BP∗ = Z(p)[v1, v2, v3, . . .].

In §1, we present three groups of results. First, we give a structure theorem for a
class of H-spaces that may be defined entirely in terms of k(n). Second, starting from
P (n), we construct examples of such H-spaces which we use to prove our structure
theorem. Third, there are consequences for the structure of P (n)-(co)homology: we
find (i) a Quillen-type result, that P (n)∗(X) is generated as a module by elements
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of P (n)i(X) for i ≥ 0, (ii) a Landweber-type filtration theorem, and (iii) a bound on
the homological dimension of P (n)-homology.

All these results depend on the Ravenel–Wilson calculation [RW96] of the Hopf
ring for P (n), which encodes the unstable operations in P (n)-cohomology. All the
machinery of [Bo95, BJW95] becomes available, making P (n)∗(−) our sixth example
of a cohomology theory whose operations we can handle in a uniform manner.

The authors acknowledge the influence of D. C. Johnson and D. C. Ravenel on
this paper through their work with us on [BJW95, RW96].

Notation We fix throughout a prime p and an integer n > 0. Because it occurs so
frequently, we find it convenient to write N = pn − 1.

[For completeness, we include the results for p = 2. Modifications are required
because: (i) our ring spectra are no longer commutative, and (ii) one of our test
spaces, real projective space, has different cohomology. Shorter comments, like this
one, are enclosed within square brackets. Longer comments form a subsection. A few
proofs are substantial enough to be deferred to a separate paper [Bo].]

All spaces are assumed to be homotopy-equivalent to cw-complexes. Identity
maps and homomorphisms are denoted by id.

We use much notation and terminology from [BJW95]. A ring spectrum E defines
a homology theory E∗(−) and a cohomology theory E∗(−), both multiplicative with
coefficient ring E∗ = πS∗ (E). Then Ei(−) is represented (on the homotopy category
Ho of unbased spaces) by the i-th space E i of the Ω-spectrum for E.

Because we deal mainly with homology and homotopy groups rather than coho-
mology, we use homology degrees throughout (unlike [BJW95]), assigning the degree
i to elements of Ei(X) and πi(X). This forces elements of Ei(X) to have degree −i.
We thus write E∗ for the coefficient ring, even when working with cohomology; in
particular, Ei(point) = E−i. So the Hazewinkel generator vi has degree 2(pi−1).

The algebraic suspension ΣM of a graded group M is a copy of M with all degrees
raised by one: an element x ∈Mi gives rise to Σx ∈ (ΣM)i+1.

As in [RW96], E(x, . . .) denotes the exterior algebra on generator(s) x, . . . ,
P (x, . . .) the polynomial algebra, and TPh(x) the truncated polynomial algebra
P (x)/(xp

h
).

1 The main results

Splittings of H-spaces We regard the standard generator uk of P (n)∗(Sk) as a
map uk:S

k → P (n)
k
. We consider spaces X that satisfy the axioms:

(i) X is a connected H-space of finite type (meaning that each homo-
topy group πi(X) is finitely generated);

(ii) k(n)∗(X) is a free k(n)∗-module (equivalently, has no vn-torsion);

(iii) For any k > 0, any map Sk → X factors through the map uk to
give a map P (n)

k
→ X.

(1.1)

Our first theorem classifies these spaces.
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Theorem 1.2 Given n > 0, the spaces X that satisfy the axioms (1.1) have the
following properties:

(a) For each k > 0, there is (up to homotopy) a unique (k−1)-connected (but not
k-connected) example Yk that does not decompose as a product of spaces;

(b) Every X is homotopy equivalent to some product Y =
∏
i Yki

, where the num-
ber of copies of each Yk is finite and is uniquely determined by X;

(c) Every retract of X is another example;

(d) Every product of examples is an example, provided it has finite type;

(e) The loop space ΩX is another example, provided X is simply connected.

Shortly, in Definition 1.10, we shall reveal the spaces Yk explicitly.

Remark The above decompositions and equivalences are not as H-spaces. Neverthe-
less, no information is lost, because in (b) for example, the given multiplication on X
corresponds to some multiplication on Y ; as we (shall) have complete information on
the possible maps Y × Y → Y , we can in principle detect which of them are H-space
multiplications.

Part (c) is clear. So is (d), with the help of the Künneth formula for k(n)-homology
(as in [Bo95, Thm. 4.2]). Part (e) will follow immediately from (b) and Theorem 1.15.
We prove (a) and (b) in §3.

Towers built from k(n) Although axiom (1.1)(iii) is technically convenient, it
lacks intuitive content. Here, we replace it by a more appealing axiom. This makes
Theorem 1.2 analogous to the results of [Wi75], as we discuss later in this section.

We consider spaces that are built from the spaces k(n)
i
in a particularly nice way,

using only vn-torsion invariants. We recall that k(n)∗ = Fp[vn], where vn has degree
2N = 2(pn−1).

Definition 1.3 Given a space Y , we call a map z:Y → k(n)
q+1

a vn-torsion map

if, considered as an element of k(n)∗(Y ), it satisfies vcnz = 0 for some c. (We assume
q ≥ 0. Indeed, z must be zero unless q ≥ 2N + 1 = 2pn − 1.)

We call a space X a k(n)-tower with vn-free homotopy if it is the homotopy limit
of a sequence of spaces and maps

. . . −−→ X3 −−→ X2 −−→ X1 −−→ X0 = point (1.4)

in which each map Xi → Xi−1 (for i > 0) is the homotopy fibre of some vn-torsion
map zi:Xi−1 → k(n)

q(i)+1
. (We allow the possibility of a finite tower, X = Xm for

some m, or even a tower having only one stage, X = X1 = k(n)
q(1)

, as well as the

degenerate case where X is contractible.)

A vn-torsion map z:Y → k(n)
q+1

necessarily induces the zero homomorphism on

homotopy. Then for each i > 0 (assuming X is connected, so that q(i) ≥ 1), the
homotopy long exact sequence of zi reduces to the short exact sequence of groups

0 −−→ Σq(i)Fp[vn] −−→ π∗(Xi) −−→ π∗(Xi−1) −−→ 0. (1.5)
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Thus π∗(X) is an iterated extension of suspensions of Fp[vn]. (Our terminology is
abusive to the extent that we do not have a natural action of vn on π∗(Xi) for i > 1.)

We study such towers in more detail in §4 and prove the following equivalence.

Theorem 1.6 If we replace axiom (iii) in (1.1) by the axiom

(iii)′ X is a k(n)-tower with vn-free homotopy, (1.7)

we obtain the same class of H-spaces. Thus Theorem 1.2 remains valid.

Examples based on P (n) The prime ideal

In = (p, v1, v2, . . . , vn−1) ⊂ BP∗ = Z(p)[v1, v2, v3, . . .]

is invariant and therefore of particular interest. (We set v0 = p, and take I1 = (p)
and I0 = (0).) The spectrum P (n) is constructed (see §2) to have the quotient ring

P (n)∗ = BP∗/In = Fp[vn, vn+1, vn+2, . . .]

as its homotopy. In particular, P (0) = BP and P (1) is just BP mod p.
Further, given m ≥ n, we kill off the ideal

Jm = (vm+1, vm+2, vm+3, . . .) ⊂ P (n)∗ (1.8)

to produce the spectrum we call P (n,m) (but known to Yosimura [Yo76] as
BP [n,m+1) and to Yagita [Ya76] as BP (p, v1, . . . , vn−1, vm+1, . . .)), with homotopy

P (n,m)∗ = P (n)∗/Jm = Fp[vn, vn+1, . . . , vm].

It comes equipped with a canonical map ρ(m):P (n) → P (n,m). These spectra are
intimately connected with the spectra E(n,m) = v−1

m P (n,m), which are essential in
Ravenel–Wilson–Yagita [RWY98]. We recognize P (n, n) as k(n).

Remark Unlike In, the ideal Jm is not at all canonical, as it depends on the choice
of the generators vi of P (n)∗. Nevertheless, our results are independent of this choice,
as we are concerned only with the additive structure of P (n,m).

The behavior of these spectra depends on the numerical function

g(n,m) = 2(pn + pn+1 + . . .+ pm), (1.9)

where it is reasonable to define g(n, n−1) = 0.

Definition 1.10 Given k > 0, we define the H-space Yk = P (n,m)
k
, where the

integer m is defined in terms of equation (1.9) by

g(n,m−1) < k ≤ g(n,m). (1.11)

For convenience, we also define Y0 = Fp, viewed as a discrete group.

These are the spaces Yk that appear in Theorem 1.2. In particular, Yk = k(n)
k

for 0 < k ≤ 2pn. As the spaces P (n)
k

satisfy the axioms (1.1), they must decompose

according to Theorem 1.2(b). We establish the following splittings in §3.
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Theorem 1.12 Assume k ≥ 0. If k > 0, define m by equation (1.11); if k = 0, take
m = n− 1. Then we have homotopy decompositions

P (n)
k
' Yk ×

∏
j>m

Yk+2(pj−1) (1.13)

and, for any h > m,

P (n, h)
k
' Yk ×

h∏
j=m+1

Yk+2(pj−1). (1.14)

These are equivalences of H-spaces [except in the extreme case when p = 2 and
k = g(n,m)].

We showed in [BW01, Thm. 1.1] that such splittings exist, though without making
them explicit as we do here in §3. They are patterned after the splittings of the spaces
BP k in [Wi75], which were recovered explicitly in [BJW95] and are reviewed below.

We note that equation (1.14) reduces to Definition 1.10 when h = m.

Remark No such result holds for P (n,m)
k

when k > g(n,m), as axiom (1.1)(ii)

definitely fails (otherwise this space would contradict Theorem 1.2(b)).

We use equation (1.14) to decompose ΩYk = P (n,m)
k−1

explicitly.

Theorem 1.15 The loop space ΩYk is given for all k > 0 as follows:

(a) If k does not have the form g(n, q) + 1 for any q, then ΩYk ' Yk−1;

(b) If k = g(n, q) + 1, where q ≥ n− 1, then ΩYk ' Yk−1 × Yk−1+2(pq+1−1).

Since Ω is a right adjoint functor and so preserves products, this gives part (e) of
Theorem 1.2. We leave it as an exercise to decompose the negative spaces P (n)

−k
for k > 0, by writing them as Ωk+1P (n)

1
, and similarly P (n,m)

−k
.

Some history For n = 0, the results differ slightly. Recall that k(0) = H(Z(p)),
P (0) = BP , and (see [Wi75]) P (0,m) = BP 〈m〉 has BP 〈m〉∗ = Z(p)[v1, v2, . . . , vm].
Axioms (1.1) (with (iii) replaced by (1.7)) then yield connected H-spaces X whose
homotopy groups πk(X) and homology groups Hk(X) are all free Z(p)-modules of
finite rank. The Postnikov k-invariants of such spaces are necessarily torsion elements.
Theorem 1.2 remains valid exactly as stated, with m still defined by equation (1.11).
However, Theorem 1.12 gives H-space equivalences only for g(0,m−1) < k < g(0,m);
for k = g(0,m), we have merely a homotopy equivalence. (Of course, Y0 = Z(p) rather
than Fp.) These are the main results of [Wi75] or Theorem 1.16 of [BJW95], and form
the motivation for this work.

The structure of P (n)-cohomology We extend Quillen’s theorem on complex
cobordism to P (n).

Theorem 1.16 For any space X, the cohomology P (n)∗(X) is generated, as a
P (n)∗-module (topologically if X is infinite), by elements of P (n)i(X) for i > 0,
together with one element of P (n)0(X) for each component of X.
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This result is essential for the calculations in Ravenel–Wilson–Yagita [RWY98].
One version was stated as Theorem 1.11 of [Ya84], without proof (although the ap-
proach suggested is now known not to work). In §8, our machinery of additive unstable
operations provides a very short direct proof in terms of an explicit formula.

We also refine Landweber’s filtration theorem. Yosimura [Yo76, Thm. 3.4] and
Yagita [Ya76] both observed that Landweber’s theorem generalizes to stable P (n)-co-
homology comodules M . The only finitely generated invariant prime ideals in P (n)∗
are Im = (vn, vn+1, . . . , vm−1) for n ≤ m <∞ (where In is interpreted as (0)). We find
in §8 that an unstable comodule structure on M (in the sense of [BJW95, Defn. 6.32])
restricts the possible Landweber factors as follows.

Lemma 1.17 LetM be a P (n)∗-module with a single generator x ∈Mk (in homology
degree −k) and annihilator ideal Ann(x) = Im, where n ≤ m <∞, so that

M ∼= Σ−kP (m)∗ ∼= ΣkP (m)∗ ∼= Σk(P (n)∗/Im).

Then M admits an unstable P (n)-cohomology comodule structure if and only if k
satisfies the appropriate condition (depending on m and p):

(i) k ≥ 0 if m = n;

(ii) k ≥ g(n, n)− 1 if m = n+ 1;

(iii) k ≥ g(n,m−1)− 1 if m ≥ n+ 2 and p is odd;

(iv) k ≥ g(n,m−1)− 2 if m ≥ n+ 2 and p = 2;

and this comodule structure is unique.

This leads directly to the filtration theorem.

Theorem 1.18 Let M be an unstable P (n)-cohomology comodule of finite type
(each M i a finitely generated Fp-module) and bounded above (M i = 0 for all i > i0).
Then M admits a finite filtration by subcomodules

0 = M0 ⊂M1 ⊂ . . . ⊂Mh = M

in which each quotient Mi/Mi−1 is a monogenic comodule Σ−kiP (mi)∗ with generator
xi, as listed in Lemma 1.17. In particular, M is a finitely presented P (n)∗-module.

If, in addition, M is a P (n)∗-algebra of any of the forms:

(i) M = P (n)∗(X), for a finite complex X;

(ii) M = Im[f ∗:P (n)∗(Y ) → P (n)∗(X)], for a map of spaces f :X → Y , where
X is a finite complex;

(iii) A spacelike (see [BJW95, Defn. 7.14]) unstable P (n)∗-cohomology algebra;

we may take each Mi to be an invariant ideal in M . At the last stage, we may take
xh = 1 and mh = n.

Our proof in §8 quotes the method of proof of Theorem 20.11 in [BJW95]. How-
ever, here we prove that M is finitely presented, instead of assuming it. (Of course,
it has long been known that for finite X, P (n)∗(X) is a coherent P (n)∗-module and
hence finitely presented.) In [ibid.], we overlooked the fact that this modification
applies equally well to BP = P (0), as follows. (Again, (i) is not new. However, (ii)
is non-trivial and new when BP ∗(Y ) has phantom classes.)
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Theorem 1.19 Let M be an unstable BP -cohomology comodule of finite type (each
M i a finitely generated Z(p)-module) and bounded above, for example:

(i) M = BP ∗(X), for a finite complex X;

(ii) M = Im[f ∗:BP ∗(Y ) → BP ∗(X)], for a map of spaces f :X → Y , where X
is a finite complex.

Then M is a finitely presented BP∗-module.

Homological dimension Our starting point is the Conner–Floyd Theorem [CF66,
Thm. 10.1], that the map of ring spectra from the unitary Thom spectrum MU to
the K-theory spectrum K determined by the Todd genus induces for finite X an
isomorphism of cohomology theories

K∗ ⊗MU∗ MU∗(X)
∼=−−→ K∗(X).

A far-reaching analogue is the result

E(n,m)∗ ⊗P (n)∗ P (n)∗(X) ∼= E(n,m)∗(X), (1.20)

where E(n,m) = v−1
m P (n,m). A key ingredient of such results is knowledge of the

homological dimension of various (co)homology modules.
The case m = n of (1.20) is due to Morava [Mo85] as part of his structure theorem,

and is quoted and reproved in [JW75], as well as by Yagita [Ya76]. The case n = 0,
along with results on the homological dimension of BP∗(X), was proved by Johnson–
Wilson [JW73, Rk. 5.13] by means of the splitting theorem for BP in [Wi75]. Shortly
afterwards, Landweber [La76] reproved this case by using cohomology operations
instead of the splitting, establishing his exact functor theorem in the process; however,
he was unable to recover Corollary 4.4 of [JW73], which gave an upper bound on the
homological dimension of BP∗(X). Later, Morava and Yagita [Ya77, Thm. 3.11]
showed that P (n)∗(X) is a BP ∗(BP )-module. Yagita and Yosimura [Yo76] both used
this fact to generalize the exact functor theorem to P (n), which fully includes (1.20),
and obtain homological dimension results for P (n)∗(X).

We have now gone full circle, and with our splitting for P (n) in hand, can use the
techniques of [JW73] to recover these results as well as (1.20), with the added benefit
of the following estimate, which we establish in §5.

Theorem 1.21 Assume that X is a finite complex of dimension less than g(n,m)/2.
Then the homological dimension of the P (n)∗-module P (n)∗(X) is at most m− n.

Although the exact functor theorem does not apply, ρ(m):P (n) → P (n,m) still
induces a natural homomorphism of P (n,m)∗-modules

ρ(m):P (n,m)∗ ⊗P (n)∗ P (n)∗(X) −−→ P (n,m)∗(X).

This is an isomorphism when X is a point, but not in general, as the left side is not
a cohomology theory. Classically, as in [JW73], one then asks for which X it is an
isomorphism. Instead, we show in §5 that it is always an isomorphism in a certain
range of degrees [with no modification if p = 2]. Explicitly, its components are

ρ(m):P (n)h(X)
/ ∑

j>m

vjP (n)h+2(pj−1)(X) −−→ P (n,m)h(X). (1.22)
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Theorem 1.23 Assume that X is finite-dimensional and that m ≥ n > 0. Then
(1.22) is an isomorphism for all h ≤ g(n,m), and therefore a P (n,m)∗-module iso-
morphism in this range.

In particular, for m = n we have the isomorphism

ρ(n):P (n)h(X)
/ ∑

j>n

vjP (n)h+2(pj−1)(X) ∼= k(n)h(X)

for all h ≤ 2pn, which preserves the vn-action in this range.

2 The ring spectrum P (n)

As the literature is somewhat conflicted [especially when p = 2], we review the
construction of P (n) in fair detail. In this section, we work entirely in the graded
stable homotopy category Stab∗.

The spectrum P (n), so named by Johnson–Wilson [JW75], was based on work of
Morava. It may conveniently be constructed directly from the Thom spectrum MU
by applying Sullivan–Baas theory [Ba73] to kill off the unwanted generators of MU∗,
as well as p (with no need for localization). (As stable P (n)-cohomology operations
act faithfully on P (n)-homology, no information is lost by working in homology.)

It is automatically a BP -module spectrum, with an action map λ:BP ∧ P (n) →
P (n) that satisfies the usual two module axioms, and the canonical map BP → P (n)
is BP -linear. It comes equipped with an exterior algebra E(Q0, Q1, . . . , Qn−1) of BP -
linear operations, where Qi has homology degree −(2pi−1); we write the monomial
basis elements as QI = Qi0

0 ◦Qi1
1 ◦ . . . ◦Q

in−1

n−1 for each multi-index I = (i0, i1, . . . , in−1),
where each ir is 0 or 1.

The multiplication The canonical map η:S0 → BP → P (n) serves as the unit
map of P (n), where S0 denotes the sphere spectrum, but there is no obvious mul-
tiplication on P (n). It is known that for p 6= 2, there is a unique multiplication
φ:P (n) ∧ P (n) → P (n) having the following properties:

(i) φ is BP -bilinear;

(ii) BP → P (n) is multiplicative;

(iii) φ has η:S0 → P (n) as two-sided unit;

(iv) φ is commutative;

(v) φ is associative;

(vi) Each Qi:P (n) → P (n) is a derivation, in the sense that

(2.1)

Qi◦φ = φ◦(Qi ∧ id) + φ◦(id ∧Qi):P (n) ∧ P (n) −−→ P (n). (2.2)

Historically, three quite different approaches have been used. First, for p 6= 2,
Morava [Mo79] used averaging over the symmetric group Σ2 to produce idempotent
operations in (co)bordism with repeated singularities. These operations yield a canon-
ical multiplication φ on P (n) that is automatically commutative (cf. Mironov [Mi78,
Thm. 4.2]). Associativity by this method involves averaging over Σ3 and requires
p ≥ 5 [ibid., Thm. 4.1].
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The second method is heavily geometric. Mironov [Mi75] and Shimada–Yagita
[SY76] constructed (roughly equivalent) explicit multiplications on P (n) in the Baas
bordism context for any prime p. These apparently depend on a sequence of choices
of Morava manifolds. They automatically satisfy axioms (i), (ii) and (iii). Moreover,
Shimada–Yagita [SY76, Thm. 5.25] and Mironov [Mi78, Thm. 2.4] both show that
the obstructions to associativity lie in groups that vanish, and also obtain (vi). The
disadvantage of this approach is that uniqueness is difficult to handle.

Third, Würgler [Wü77] developed an entirely algebraic cohomological approach
in terms of comodules, which leads to the existence of φ and the following results.

Lemma 2.3 In the graded stable homotopy category Stab∗:

(a) Any BP -linear map P (n) → P (n), of any degree, can be uniquely written in
the form ∑

I

cIQ
I :P (n) −−→ P (n), (2.4)

with coefficients cI ∈ P (n)∗ of the appropriate degrees;

(b) Any BP -bilinear map P (n) ∧ P (n) → P (n), of any degree, can be uniquely
written in the form ∑

I,J

cI,J φ◦(Q
I ∧QJ):P (n) ∧ P (n) −−→ P (n), (2.5)

with coefficients cI,J ∈ P (n)∗ of the appropriate degrees;

(c) Any BP -trilinear map P (n) ∧ P (n) ∧ P (n) → P (n), of any degree, can be
uniquely written in the form∑

I,J,K

cI,J,K φ◦(φ ∧ id)◦(QI ∧QJ ∧QK):P (n) ∧ P (n) ∧ P (n) −−→ P (n), (2.6)

with coefficients cI,J,K ∈ P (n)∗ of the appropriate degrees.

Proof Part (a) is a strengthened form of Proposition 3.5 of Würgler [Wü77]. Part
(b) is Proposition 4.12 of [ibid.], and (c) is entirely analogous.

Lemma 2.7 The canonical map ρ:P (n) → P (n+1) is a map of ring spectra.

Proof By a slight generalization of (2.5) (also proved by Würgler), any BP -bilinear
map P (n) ∧ P (n) → P (n+1), in particular φ◦(ρ ∧ ρ), can be written∑

I,J

cI,J ρ◦φ◦(Q
I ∧QJ):P (n) ∧ P (n) −−→ P (n+1),

with coefficients cI,J ∈ P (n+1)∗. Since φ◦(ρ ∧ ρ)◦(η ∧ η) = η, the sparseness of
P (n+1)∗ leaves ρ◦φ as the only candidate for φ◦(ρ ∧ ρ). [This works even for p = 2,
regardless of the choices of multiplication on P (n) and P (n+1).]

If we write φ◦(η ∧ id) in the form (2.4), the sparseness of P (n)∗ yields axiom (iii)
[even for p = 2], since we know φ◦(η ∧ η) = η. Then (ii) is a formal consequence of
(i), (iii), and the BP -linearity of the map BP → P (n).
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Since any BP -bilinear multiplication can be written in the form (2.5), the sparse-
ness of P (n)∗ ensures that φ is unique, as long as p ≥ 3. Further, (iv) holds, since
φ◦T also satisfies (i) and (iii), where T :P (n) ∧ P (n) → P (n) ∧ P (n) denotes the
switch map.

We may similarly deduce the associativity of φ, provided p ≥ 5, by writing φ◦(id∧
φ) in the form (2.6). We also obtain (vi), provided p ≥ 3, by writing Qi◦φ in the
form (2.5); since (Qi◦φ)◦(η ∧ id) = Qi = (Qi◦φ)◦(id ∧ η), the only candidate is (2.2).

Finally, we should mention that there is now a fourth approach, the brave new ring
context of Elmendorf–Kriz–Mandell–May. See [EKMM96] for p odd [or Strickland
[St99] for p = 2].

The case p = 2 It is well known that there is no commutative multiplication on
P (n) when p = 2. Instead, we see in [Bo] that there are exactly two multiplications
that satisfy all the axioms (2.1) except (iv). To make P (n) a ring spectrum, we
arbitrarily choose one of the two good multiplications as φ; then the other is its op-
posite, φ = φ◦T , which defines the opposite ring spectrum P (n). Nassau [Na02,
Thm. 3] shows that complex conjugation defines an isomorphism of ring spectra
Ξ:P (n) ∼= P (n).

Mironov [Mi78, Thm. 4.7] computed φ explicitly in the form (2.5) as

φ = φ◦T = φ+ vnφ◦(Qn−1 ∧Qn−1):P (n) ∧ P (n) −−→ P (n). (2.8)

From now on, we write Q = Qn−1, in view of its frequent occurrence.

Products in homology and cohomology We review briefly the various products
in P (n)-(co)homology. Their properties are familiar enough [except when p = 2]. We
remind the reader that the operations Qi act on both homology and cohomology.

Given x ∈ P (n)∗(X) and y ∈ P (n)∗(Y ), we have the cohomology cross product
x×y ∈ P (n)∗(X×Y ); by taking Y = X and using the diagonal map of X, we deduce
the cup product xy ∈ P (n)∗(X), which makes P (n)∗(X) a ring. Given a ∈ P (n)∗(X)
and b ∈ P (n)∗(Y ), we have the homology cross product a × b ∈ P (n)∗(X×Y ). All
three products are associative. For p 6= 2, they are also commutative, in the sense
that T ∗(y×x) = ±x× y, yx = ±xy, and T∗(b×a) = ± a× b. By equation (2.2), each
Qi is a derivation for all three products.

By takingX as a one-point space, P (n)∗(Y ) and P (n)∗(Y ) become P (n)∗-modules,
and both cross products are P (n)∗-bilinear [even for p = 2; see below].

There is also the scalar or Kronecker product 〈x, a〉 ∈ P (n)∗ of x ∈ P (n)∗(X) and
a ∈ P (n)∗(X), which is P (n)∗-bilinear [even for p = 2; see [Bo]].

The case p = 2 There are of course no signs, but the noncommutativity of φ forces
us to watch carefully for any shuffling of copies of P (n). Nevertheless, we find [Bo]
that the Künneth and duality formulae continue to hold, exactly as stated in [Bo95].

It is immediate from equation (2.8) that

T ∗(y×x) = x× y = x×y + vnQx×Qy in P (n)∗(X×Y ), (2.9)

where x× y denotes the twisted cross product formed using the opposite multiplica-
tion φ on P (n). For cup products, this implies

yx = xy + vn(Qx)(Qy) in P (n)∗(X), (2.10)
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so that P (n)∗(X) is not commutative in general in the ordinary sense. Alterna-
tively, these products are TQ-commutative if we replace the standard commutativity
isomorphism T :A⊗B ∼= B ⊗ A everywhere by TQ:A⊗B ∼= B ⊗ A, defined by

TQ(a⊗ b) = b⊗ a+ vnQb⊗Qa in B ⊗ A. (2.11)

Similarly, homology is also TQ-commutative, in the sense that

T∗(b×a) = a× b = a× b+ vnQa×Qb in P (n)∗(X×Y ). (2.12)

Taking X to be a point shows that the P (n)∗-actions on P (n)∗(Y ) and P (n)∗(Y )
are independent of the choice of φ. In [Bo], we find that 〈x, a〉 is also independent of
this choice.

There is one surprise, on account of the hidden shuffling, proved in [Bo].

Proposition 2.13 Given x ∈ P (n)∗(X), y ∈ P (n)∗(Y ), a ∈ P (n)∗(X), and b ∈
P (n)∗(Y ), we have

〈x×y, a×b〉 = 〈x, a〉〈y, b〉+ vn〈x,Qa〉〈Qy, b〉. (2.14)

If instead we mix the products, we find

〈x×y, a×b〉 = 〈x, a〉〈y, b〉. (2.15)

3 Proofs of the main theorems

In this section, we establish Theorems 1.2 and 1.12. More precisely, we reduce
them to two key lemmas: Lemma 3.1 provides our main splitting and Lemma 3.8 will
imply that our splittings are best possible.

Splittings All our splittings are derived from the following splitting.

Lemma 3.1 For k ≤ g(n,m), where m ≥ n, there is a map

θ(m):P (n,m)
k
−−→ P (n)

k

that splits the canonical map ρ(m):P (n)
k
→ P (n,m)

k
, i. e. ρ(m)◦θ(m) ' id. It is a

map of H-spaces [except when p = 2 and k = g(n,m)].

We express this in terms of idempotent P (n)-cohomology operations in §5.
A short direct proof of Lemma 3.1 is presented in [BW01], based on the bar

spectral sequence. For such k, we show that E∗
(
P (n,m)

k

)
is a quotient of E∗

(
P (n)

k

)
,

first for E = P (n), then for E = P (n,m), and that these are free E∗-modules. It
follows by duality that θ(m) exists, but its status as an H-map is left unclear.

We deduce other useful splittings. The canonical map ρ(m−1,m):P (n,m) →
P (n,m−1), which kills vm, fits into the exact triangle of spectra

P (n,m) vm−−−→ P (n,m)
ρ(m−1,m)−−−−−−−→ P (n,m−1) δ−−→ P (n,m). (3.2)

On homotopy groups, this induces the obvious short exact sequence

0 → Fp[vn, vn+1, . . . , vm] vm−−−→ Fp[vn, vn+1, . . . , vm] → Fp[vn, vn+1, . . . , vm−1] → 0.
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Unstably, we have the H-space fibration

P (n,m)
k+2(pm−1)

vm−−−→ P (n,m)
k

ρ(m−1,m)−−−−−−−→ P (n,m−1)
k
.

For k ≤ g(n,m−1), the composite

P (n,m−1)
k

θ(m−1)−−−−−→ P (n)
k

ρ(m)−−−−→ P (n,m)
k

(3.3)

automatically splits ρ(m−1,m), to yield the decomposition

P (n,m)
k
' P (n,m−1)

k
× P (n,m)

k+2(pm−1)
, (3.4)

where the two injections are (3.3) and vm. This is a decomposition of H-spaces [except
when p = 2 and k = g(n,m−1)].

Proof of Theorem 1.12 This is completely analogous to the proof of Theorem 1.16
of [BJW95]. Everything we need is contained in the commutative diagram

P (n)
k+2(pj−1)

P (n)
k

P (n,m)
k

P (n, j)
k+2(pj−1)

P (n, j)
k

-
vj

?

ρ(j)

-
ρ(m)

?

ρ(j)

-
vj

�
�

�
�

�
��3

ρ(m,j)
(3.5)

of H-spaces and canonical H-maps, where j > m.
With m given by (1.11), we observe that the spaces Yk and Yk+2(pj−1) appear

in the diagram disguised as P (n,m)
k

and P (n, j)
k+2(pj−1)

. We insert the splittings

θ(m) and θ(j) from Lemma 3.1 to produce the desired decomposition of P (n)
k
, as

suggested by the decomposition of abelian groups

Fp[vn, vn+1, vn+2, . . .] = Fp[vn, vn+1, . . . , vm]⊕
⊕
j>m

vjFp[vn, vn+1, . . . , vj].

(But we warn that our splittings cannot be expected to induce exactly this decom-
position of the coefficient ring P (n)∗, and it seems likely that they never do.)

In detail, we map Yk into P (n)
k

by θ(m), which is an H-map [unless p = 2 and

k = g(n,m)], and Yk+2(pj−1), for each j > m, by the H-map (in all cases)

Yk+2(pj−1)
θ(j)−−−→ P (n)

k+2(pj−1)

vj−−→ P (n)
k
.

We multiply these together, using the H-space structure of P (n)
k
, to form a map

f :W → P (n)
k

from the restricted direct product W (the union of all finite subprod-

ucts) of the based Y-spaces mentioned.
We filter P (n)∗ by the ideals Jj. We note that vj ◦θ(j) induces a homomorphism

P (n, j)∗ → Jj−1 on homotopy groups that induces the quotient isomorphism

P (n, j)∗ = Fp[vn, vn+1, . . .]/Jj
vj−−→ Jj−1/Jj.

This is enough to guarantee that f induces an isomorphism on homotopy groups and
is thus a homotopy equivalence. Because the connectivities of the Y-spaces increase,
W is homotopy-equivalent to the desired full product and we have (1.13).
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The same method applies to P (n, h)
k
, with the simplification that the product

W is now finite. (One can also produce decompositions like (1.14) directly from the
splittings (3.4) by induction on h, though the resulting maps are different and far
more complicated.)

For k = 0, the splitting θ(n−1):Y0 = Fp → P (n)
0

is obvious and unique up to

homotopy. We can still use diagram (3.5).

Indecomposability On the other hand, we need to know that Yk does not split.

Lemma 3.6 A map f :Yk → Yk is a homotopy equivalence if and only if it induces
an isomorphism on the bottom homotopy group πk(Yk) ∼= Fp.

Corollary 3.7 The space Yk does not decompose as a product.

In §12, we prove the following about P (n) and deduce Lemma 3.6 from it.

Lemma 3.8 Represent an unstable operation r:P (n)k(−) → P (n)m(−), where k > 0
and m > 0, by the map r:P (n)

k
→ P (n)

m
. Then the induced homomorphism on

homotopy groups

r∗: Σ
kP (n)∗ ∼= π∗

(
P (n)

k

)
π∗(r)−−−−→ π∗

(
P (n)

m

)
∼= ΣmP (n)∗ (3.9)

has the properties, for any element v ∈ P (n)∗:

(a) r∗Σ
k(vnv) = vnr∗Σ

kv;

(b) r∗Σ
k(vqv) ≡ vqr∗Σ

kv mod Iq = (vn, vn+1, . . . , vq−1), provided k > g(n, q−1).

Construction of maps Our strategy for proving Theorem 1.2 is to construct
enough maps to and from the spaces P (n)

k
.

Lemma 3.10 If X is a space for which k(n)∗(X) is a free k(n)∗-module, then
P (n)∗(X) is a free P (n)∗-module.

Proof Lemmas 4.7 (with k=m= n) and 2.1 of Yosimura [Yo76] show that P (n)∗(X)
is a flat P (n)∗-module. Such modules are free by [ibid., Prop. 1.5].

Lemma 3.11 Let X be a (k−1)-connected space with πk(X) a nonzero finite abelian
p-group and suppose k(n)∗(X) is a free k(n)∗-module. Then there exists a map

f :X → P (n)
k

that induces a nonzero homomorphism f∗: πk(X) → πk
(
P (n)

k

)
∼= Fp

on the bottom homotopy groups.

Proof Since P (n)∗(X) is a free P (n)∗-module by Lemma 3.10, the universal coeffi-
cient theorem [Bo95, Thm. 4.14] gives

P (n)∗(X) ∼= Hom∗
P (n)∗ (P (n)∗(X), P (n)∗).

As X is (k−1)-connected, P (n)k(X) ∼= Hk(X; Fp) ∼= πk(X)⊗ Fp 6= 0, and it is clear
that suitable cohomology classes f ∈ P (n)k(X), i. e. maps f :X → P (n)

k
, exist.

Proof of parts (a) and (b) of Theorem 1.2 We first note that for k > 0, the space
P (n)

k
satisfies the axioms (1.1). Axiom (i) is clear. Axiom (ii) holds by [RW96].



§4 k(n)-towers with vn-free homotopy 14

Axiom (iii) is easy. Take any element Σkv ∈ ΣkP (n)∗ ∼= π∗
(
P (n)

k

)
, where v ∈ P (n)h.

Viewed as a cohomology class, it is vuk+h ∈ P (n)∗(Sk+h). Multiplication by v on
P (n)∗(−) is represented by the map we want, v:P (n)

k+h
→ P (n)

k
.

Then Yk, being a retract of P (n)
k
, also satisfies the axioms. By Corollary 3.7,

it is indecomposable. Uniqueness of Yk and our decompositions will follow from (b),
under the assumption that all our H-spaces have finite type.

For the induction step in (b), given any (k−1)-connected space X that satisfies
the axioms, define m by (1.11). Then Lemma 3.11 provides a map

h:X −−→ P (n)
k

ρ(m)−−−−→ P (n,m)
k

= Yk

that induces a nonzero homomorphism h∗: πk(X) → πk(Yk) ∼= Fp. Choose α ∈ πk(X)
such that h∗α = 1 ∈ Fp; then axiom (iii) provides a map

f :Yk = P (n,m)
k

θ(m)−−−−→ P (n)
k
−−→ X

that induces f∗1 = α. By Lemma 3.6, h◦f :Yk → Yk is a homotopy equivalence. We
use the homotopy fibre j:F → X of h and the multiplication µ on X to construct a
homotopy equivalence

Yk × F
f×j−−−→ X ×X

µ−−→ X.

Then F , being a retract of X, again satisfies the axioms.
We begin the induction with Z0 as the given space, and find a sequence of equiv-

alences Zi ' Yki
×Zi+1 for i ≥ 0. By finiteness, the spaces Zi become more and more

highly connected as i increases, and we deduce Z0 '
∏
i Yki

as required.

4 k(n)-towers with vn-free homotopy

In this section, we prove Theorem 1.6. We must show that the original axiom (iii)
of (1.1) is equivalent (in the presence of the other axioms) to axiom (iii)′ stated in
(1.7), which asserts that X is a k(n)-tower with vn-free homotopy. Lemma 4.1 shows
that (iii)′ implies (iii), while Lemma 4.3 gives the converse.

Lemma 4.1 Suppose the connected H-space X is a k(n)-tower of finite type with
vn-free homotopy. Then axiom (iii) holds: given k > 0, any map Sk → X factors
through the standard map uk:S

k → P (n)
k

to yield a map P (n)
k
→ X.

We first show that it does not matter how far up the tower we can lift.

Lemma 4.2 In diagram (1.4), any map f :P (n)
k
→ Xi−1 lifts to a map P (n)

k
→ X.

Proof With zi as in Definition 1.3, we note that vcn(zi◦f) = f ∗(vcnzi) = 0 in

k(n)∗
(
P (n)

k

)
. But by [RW96], k(n)∗

(
P (n)

k

)
and hence k(n)∗

(
P (n)

k

)
contain no

vn-torsion; therefore zi◦f ' 0 and f lifts to f ′:P (n)
k
→ Xi.

By induction and limits, f lifts all the way to X.

Proof of Lemma 4.1 For any connected space Y and k > 0, let us call an element
α ∈ πk(Y ), or map α:Sk → Y , extendable if it extends over uk to a map P (n)

k
→ Y .
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All elements of π∗
(
k(n)

q

)
∼= ΣqFp[vn] are obviously extendable. It follows from

diagram (1.5) that every element in Ker[π∗(Xi) → π∗(Xi−1)] is extendable.
By Lemma 4.2, any extendable element of π∗(Xi−1) lifts in diagram (1.4) to some

extendable element of π∗(X).
The sum of any two extendable elements of πk(X) is again extendable: given

f1, f2:P (n)
k
→ X, we use the given multiplication µ on X to construct the map

P (n)
k

∆−−→ P (n)
k
× P (n)

k

f1×f2−−−−→ X ×X
µ−−→ X.

Together, these facts imply that every element of π∗(X) is extendable.

The space Yk A countable product of k(n)-towers with vn-free homotopy is another
such tower (provided it has finite type). In view of Theorem 1.2(b), it suffices to prove
the following.

Lemma 4.3 For each k > 0, the space Yk is a k(n)-tower with vn-free homotopy.

We first destabilize the Johnson–Wilson construction [JW75, §4] of a filtration
of the spectrum P (n) whose subquotients are suspensions of k(n), and adapt it for
P (n,m). The result will be a tower

. . . −−→ W3 −−→ W2 −−→ W1 −−→ W0 = P (n,m)
k

(4.4)

with trivial homotopy limit, where each Wi is the homotopy fibre of a map Wi−1 →
k(n)

q(i)
that is epic on homotopy groups. This depends on the following lemma,

where we recall that π∗
(
P (n,m)

k

)
∼= ΣkP (n,m)∗ etc.

Lemma 4.5 Given v ∈ P (n,m)h and k ≤ g(n,m), there exist an integer c and stable
P (n)-operation r such that the composite

s:P (n,m)
k

θ(m)−−−−→ P (n)
k

r−−→ P (n)
k+h−2cN

ρ(n)−−−→ k(n)
k+h−2cN

(4.6)

induces s∗Σ
kv = Σk+h−2cNvcn on homotopy groups.

Proof Lemma 1.12 of [JW75], viewed unstably, supplies c and r.

We construct the tower (4.4) by induction, starting from W0 = P (n,m)
k
.

Given j:Wi−1 → P (n,m)
k
, where Wi−1 is (k+h−1)-connected and j∗: π∗(Wi−1) →

π∗
(
P (n,m)

k

)
is monic, we choose a bottom nonzero element u ∈ πk+h(Wi−1) to kill.

Lemma 4.5 provides a map s:P (n,m)
k
→ k(n)

k+h−2cN
such that s∗j∗u = Σk+h−2cNvcn.

For dimensional reasons, s◦j factors through vcn: k(n)
k+h

→ k(n)
k+h−2cN

to produce

the desired map Wi−1 → k(n)
k+h

, with fibre Wi.

This is the wrong kind of tower for Definition 1.3. To correct it, we could take the
homotopy fibre Xi of each map Wi → P (n)

k
, to express ΩP (n,m)

k
= P (n,m)

k−1
as

a k(n)-tower with vn-free homotopy. This approach fails to produce a suitable tower
for P (n,m)

k
when k = g(n,m). Our solution is to observe that it is inefficient to

deloop and then take fibres; instead, we prove only what we actually need.
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Lemma 4.7 Given a (k+h)-connected map q:P (n,m)
k
→ X and any map

s:P (n,m)
k
→ k(n)

k+h−2cN
, there exists a vn-torsion map z:X → k(n)

k+h+1
such

that s is one value of the following Toda bracket,

s ∈ 〈vcn, z, q〉:P (n,m)
k
−−→ k(n)

k+h−2cN
.

Proof We are using the adjoint (but equivalent) description of a Toda bracket in
terms of loop spaces instead of suspensions. We build the commutative diagram
Figure 4.1 in which the two rows are fibration sequences. We start with the obvious

P (n,m)
k

k(n)
k+h X ′ X k(n)

k+h+1

k(n)
k+h

k(n)
k+h−2cN

G k+h−2cN k(n)
k+h+1

k(n)
k+h−2cN+1

?

q′
Q

Q
Q

Q
QQs

q

-

?

=

-

?

g

-z

?

f

?

=

-
−vc

n -π -δ -
vc

n

Figure 4.1: Construction of the Toda bracket 〈vcn, z, q〉

fibration as the bottow row, where (stably) G denotes the cofibre of vcn: k(n) → k(n),

with homotopy Fp[vn]/(vcn). By the connectivity of q, q∗:Gj(X) → Gj
(
P (n,m)

k

)
is

an isomorphism for j ≤ k+h−2cN +2N −1, so that π◦s factors uniquely through q
to yield a map f such that f ◦q = π◦s. We put z = δ◦f , which automatically satisfies
vcnz = 0. We define X ′ as the homotopy fibre of z, and fill in g to form a morphism
of fibrations.

Since X ′ may be constructed as a pullback, we can fill in q′ to lift q and satisfy
g◦q′ = s. (Equivalently, vcn◦

[
P (n,m)

k
, k(n)

k+h

]
is part of the indeterminacy of the

Toda bracket.) Then by definition, g◦q′ = s is one value of the Toda bracket.

Proof of Lemma 4.3 We build the desired tower for P (n,m)
k

by induction, starting

from a point as X0. Suppose we have constructed a map qi−1:P (n,m)
k
→ Xi−1

that induces a surjection qi−1∗: Σ
kP (n,m)∗ → π∗(Xi−1) on homotopy groups, with

kernel K an Fp[vn]-submodule. We choose a bottom nonzero element Σkv ∈ Kk+h to
kill, where Ki = 0 for i < k + h. Then Lemma 4.5 provides a map s:P (n,m)

k
→

k(n)
k+h−2cN

. We use Lemma 4.7 to build Figure 4.1, taking qi−i as q and Xi−1 as X.

We next take homotopy groups of Figure 4.1. By Lemma 3.8(a), applied to
r◦θ(m)◦ρ(m):P (n)

k
→ P (n)

k+h−2cN
, s∗ is a homomorphism of Fp[vn]-modules. By

exactness and the hypothesis that q∗Σ
k(vinv) = 0, q′∗(v

i
nv) must lift to −Σk+hvin ∈

π∗
(
k(n)

k+h

)
. It now follows that q′∗ is also epic, with kernel

K ′ = Ker
[
s∗|K:K −−→ Σk+h−2cNFp[vn]

]
⊂ K,

a strictly smaller Fp[vn]-submodule of ΣkP (n,m)∗. We take X ′ as Xi and q′ as qi.
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The kernels K become more and more highly connected as i increases, hence
P (n,m)

k
is the homotopy limit of the spaces Xi.

5 Splittings of P (n)-cohomology

In this section, we translate the H-space splittings in §3 into splittings of P (n)-
cohomology. We also deduce Theorems 1.21 and 1.23.

We have yet to prove Lemmas 3.1, 3.6 and 3.8. Lemma 3.1 is equivalent to the
following statement for the represented functors. (We do not mention Lemmas 3.6
and 3.8 again until §12.)

Lemma 5.1 Assume that k ≤ g(n,m), where m ≥ n. Then there is a splitting

θ(m):P (n,m)k(X) −−→ P (n)k(X)

of ρ(m):P (n)k(X) → P (n,m)k(X) that satisfies ρ(m)◦θ(m) = id and is natural for
spaces X. It is additive [except when p = 2 and k = g(n,m)].

This we actually prove in §9 [except the nonadditive case; see [Bo]], by constructing
an idempotent cohomology operation θ(m) in P (n)k(X). Unlike the case of BP , the
use of nonadditive operations yields no further splittings [unless p = 2].

We next translate equation (3.4).

Corollary 5.2 For k ≤ g(n,m−1), where m > n, we have the natural short exact
sequence of abelian groups

0 → P (n,m)k+2(pm−1)(X) vm−−−→ P (n,m)k(X)
ρ(m−1,m)−−−−−−−→ P (n,m−1)k(X) → 0.

This splits naturally [unless p = 2 and k = g(n,m−1)].

This implies our homological dimension bound, by the methods of [JW73].

Proof of Theorem 1.21 Following Yosimura [Yo76, Thm. 4.8], we need to show that

ρ(m−1,m):P (n,m)i(X) −−→ P (n,m−1)i(X) (5.3)

is epic for all i. For i ≤ 2(pm−1), this is trivial, by the exact sequence

P (n,m)i(X)
ρ(m−1,m)−−−−−−−→ P (n,m−1)i(X) δ−−→ P (n,m)i−2(pm−1)−1(X)

arising from the exact triangle (3.2).
For i > 2(pm−1), we embed X in R2q+1, where q is the dimension of X, and take

a regular neighborhood V of X. By Poincaré duality, (5.3) is equivalent to

ρ(m−1,m):P (n,m)2q+1−i(V, ∂V ) −−→ P (n,m−1)2q+1−i(V, ∂V ).

This is epic by Corollary 5.2, because by hypothesis

2q + 1− i ≤ (g(n,m)− 2) + 1− (2(pm−1) + 1) = g(n,m−1).

We also translate Theorem 1.12, using the splittings made explicit in §3, and
finally deduce Theorem 1.23. (Decompositions like (5.6) also follow directly from
Corollary 5.2 by induction on h, though the resulting homomorphisms are different.)
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Theorem 5.4 Let X be any space and suppose that m ≥ n > 0.

(a) If k ≤ g(n,m) [replaced by k < g(n,m) if p = 2], we have the natural abelian
group decomposition

P (n)k(X) ∼= P (n,m)k(X)⊕
∏
j>m

P (n, j)k+2(pj−1)(X), (5.5)

where the first factor on the right is injected by θ(m), and the others by

P (n, j)k+2(pj−1)(X)
θ(j)−−−→ P (n)k+2(pj−1)(X)

vj−−→ P (n)k(X).

Hence, by composition with ρ(h):P (n)k(X) → P (n, h)k(X) for any h > m,

P (n, h)k(X) ∼= P (n,m)k(X)⊕
h⊕

j=m+1

P (n, j)k+2(pj−1)(X). (5.6)

These decompositions are maximal if k > g(n,m−1) [also for k = g(n,m−1) if p = 2].
(They are in no sense decompositions as P (n)∗-modules.)

(b) If p = 2 and k = g(n,m), we replace equations (5.5) and (5.6) by the natural
short exact sequences

0 →
∏
j>m

P (n, j)k+2j+1−2(X) → P (n)k(X)
ρ(m)−−−−→ P (n,m)k(X) → 0

and

0 →
h⊕

j=m+1

P (n, j)k+2j+1−2(X) → P (n, h)k(X)
ρ(m,h)−−−−−→ P (n,m)k(X) → 0.

Because P (n, n) = k(n) is so familiar, we break out the special case m = n. For
h < 2(pn−1), we can even replace k(n) by the periodic Morava K-theory K(n).

Corollary 5.7 For h ≤ 2pn, where n > 0, we have, for all spaces X, the natural
abelian group decomposition

P (n)h(X) ∼= k(n)h(X)⊕
∏
j>n

P (n, j)h+2(pj−1)(X),

except that if p = 2 and h = 2n+1, we have only the natural short exact sequence

0 →
∏
j>n

P (n, j)h+2j+1−2(X) → P (n)h(X)
ρ(n)−−−→ k(n)h(X) → 0.

Remark All the splittings exhibited above depend on the choice of θ(m), which is
not canonical and does not respect multiplication by vj.

Proof of Theorem 1.23 As X is finite-dimensional, the sum in equation (1.22) is
essentially finite. Lemma 5.1 shows that ρ(m) is epic. It is clear from Theorem 5.4
that Ker ρ(m) is contained in the sum, and must therefore be the sum.
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6 Stable operations in P (n)-cohomology

In this section, we describe the stable operations in P (n)-cohomology P (n)∗(−)
in the style of [Bo95]. The results are old and well known [except for p = 2], but we
include them for completeness and ease of reference; more importantly, they serve as
a pattern for §§7, 10.

Monoidal structure (For the language of monoidal categories and functors, see
e. g. Mac Lane [Ma71, Ch. VII].) Since P (n)∗ is a commutative ring [even if p = 2],
the graded category (FMod ∗, ⊗̂, P (n)∗) of complete Hausdorff filtered P (n)∗-modules
is a symmetric monoidal category, with all (completed) tensor products taken over
P (n)∗. The cross product makes P (n)-cohomology a monoidal functor,

P (n)∗(−): (Hoop,×, point) −−→ (FMod , ⊗̂, P (n)∗). (6.1)

(Conveniently, P (n)∗(X) has no phantom classes and so is already complete Haus-
dorff.) For homology, we similarly have the monoidal functor

P (n)∗(−): (Ho,×, point) −−→ (Mod ,⊗, P (n)∗), (6.2)

with values in the category Mod of discrete P (n)∗-modules. Both functors are sym-
metric for p 6= 2.

The cohomology version for spectra and graded maps is

P (n)∗(−, o): (Stabop
∗ ,∧, S0) −−→ (FMod ∗, ⊗̂, P (n)∗),

and similarly for homology. (We include the basepoint subspectrum o in our notation
as a reminder that all stable (co)homology is reduced, and to distinguish it from the
(co)homology of a space, which here will generally be absolute.)

Operations Because Γ = P (n)∗(P (n), o) is a free P (n)∗-module, we may identify its
dual P (n)∗-module DΓ with A = P (n)∗(P (n), o), the algebra of all stable operations
in P (n)-cohomology, and have available all the stable machinery and results of [Bo95].
In particular, we have the monoidal functor

S: (FMod ∗, ⊗̂, P (n)∗) −−→ (FMod ∗, ⊗̂, P (n)∗) (6.3)

defined by SM = FMod ∗(A,M). If M is filtered by submodules F aM , we filter SM
by the submodules F aSM = SF aM ; as in [ibid.], SM is again complete Hausdorff.
The ring spectrum structure of P (n) gives S its monoidal structure (see diagram (6.10)
below), which is symmetric for p 6= 2. (As in [Bo95], care is needed in keeping track
of the many P (n)∗-module actions, some of which are not obvious.)

The action of stable P (n)-cohomology operations is visibly encoded in the
monoidal natural transformation

ρX :P (n)∗(X) −−→ S(P (n)∗(X)) = FMod ∗(P (n)∗(P (n), o), P (n)∗(X)) (6.4)

defined by ρXx = x∗, where we treat x ∈ P (n)∗(X) as a map of spectra x:X+ → P (n)
and X+ denotes the disjoint union of X and a (new) basepoint.

The coaction To convert the action of A into a coaction by Γ, we recall the natural
isomorphism [Bo95, (11.4)]

θM :S ′M = M ⊗̂Γ ∼= FMod ∗(DΓ,M) ∼= FMod ∗(A,M) = SM,
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given on x ∈M , c ∈ Γ, and r ∈ A ∼= DΓ by

((θM)(x⊗ c))r = ±〈r, c〉x, (6.5)

with the expected sign. We use it to transfer all the structure from the functor S to
S ′ and replace (6.4) by the equivalent natural transformation

ρX :P (n)∗(X) −−→ S ′P (n)∗(X) = P (n)∗(X) ⊗̂Γ. (6.6)

The monoid The resulting monoidal structure on S ′ is necessarily induced by a
monoid structure on the P (n)∗-module Γ (as we see by naturality from the case
M = N = P (n)∗ in diagram (6.10), below), and conversely. We simply need to
compute it.

Lemma 6.7 The following monoid structure on Γ, which is inherited from the
monoidal functor S, makes the natural transformation (6.6) monoidal:

(a) If p is odd, the multiplication on Γ is the obvious one,

Γ⊗ Γ = P (n)∗(P (n), o)⊗ P (n)∗(P (n), o) ×−−→ P (n)∗(P (n) ∧ P (n), o)
φ∗−−→ P (n)∗(P (n), o) = Γ,

(6.8)

as inferred by writing Γ = P (n)∗(P (n), o). The unit homomorphism of Γ is

P (n)∗ = P (n)∗(S
0, o)

η∗−−→ P (n)∗(P (n), o) = Γ.

(b) If p = 2, the multiplication is instead

Γ⊗ Γ = P (n)∗(P (n), o)⊗ P (n)∗(P (n), o) ×−−→ P (n)∗(P (n) ∧ P (n), o)
φ∗−−→ P (n)∗(P (n), o) = Γ,

(6.9)

which is better suggested by writing Γ = P (n)∗(P (n), o). The unit is unaffected.

Proof The multiplication φ on P (n) induces

φ∗:DΓ ∼= P (n)∗(P (n), o) −−→ P (n)∗(P (n) ∧ P (n), o) ∼= DΓ ⊗̂DΓ,

with the help of the Künneth formula [Bo95, Thm. 4.19]. The natural transformations
ζ(M,N) for S ′ and S form the left and right sides of the commutative diagram

(M ⊗̂Γ) ⊗̂(N ⊗̂Γ) FMod ∗(DΓ,M) ⊗̂FMod ∗(DΓ, N)

M ⊗̂N ⊗̂(Γ⊗ Γ) FMod ∗(DΓ ⊗̂DΓ,M ⊗̂N)

M ⊗̂N ⊗̂Γ FMod ∗(DΓ,M ⊗̂N)

-θM⊗θN

?

∼=
?

∼=

?

M⊗N⊗φ
?

FMod∗(φ∗,id)

-
θ(M ⊗̂N)

(6.10)

which features the multiplication φ: Γ ⊗ Γ → Γ. We evaluate on x ⊗ c ⊗ y ⊗ d,
where x ∈ M , y ∈ N , and c, d ∈ Γ. By (6.5), the lower route gives the element r 7→
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±〈r, cd〉x⊗y of FMod ∗(DΓ,M ⊗̂N). The upper route gives r⊗s 7→ ±〈r, c〉〈s, d〉x⊗y
in FMod ∗(DΓ ⊗̂DΓ,M ⊗̂N). Assuming p 6= 2, we can rewrite this as±〈r×s, c×d〉x⊗
y; then in FMod ∗(DΓ,M ⊗̂N) we find

r 7→ ±〈φ∗r, c×d〉x⊗ y = ±〈r, φ∗(c×d)〉x⊗ y.

Thus cd = φ∗(c×d) (with no sign) as expected, which is (a).
[If p = 2, this calculation is false; we must use equation (2.15) instead, which

states that 〈r, c〉〈s, d〉 = 〈r×s, c×d〉. Then cd = φ∗(c×d), for (b).]
The unit z:P (n)∗ → SP (n)∗ takes 1 = η ∈ P (n)∗ to the homomorphism

DΓ ∼= P (n)∗(P (n), o)
η∗−−→ P (n)∗(S0, o) ∼= P (n)∗,

in other words, r 7→ 〈η∗r, 1〉 = 〈r, η∗1〉. Comparison with (6.5) shows that the corre-
sponding element of S ′P (n)∗ = P (n)∗ ⊗ Γ ∼= Γ is η∗1.

If X is a point in (6.6), we find the right unit ring homomorphism

ηR:P (n)∗ −−→ S ′P (n)∗ = P (n)∗ ⊗ Γ ∼= Γ, (6.11)

which is used to make Γ a right P (n)∗-module (hence a bimodule). Since ρ is
monoidal, this action makes (6.6) a homomorphism of P (n)∗-modules.

The Hopf algebroid Now we add the algebra structure of A. Exactly as in [Bo95,
§10], composition of operations and the identity operation induce natural transforma-
tions ψ:S → SS and ε:S → I. These make S a monoidal comonad in the category
FMod , and (6.4) makes P (n)∗(X) an S-coalgebra.

We transfer this structure too to S ′. The resulting monoidal comonad structure on
S ′ is necessarily induced by a Hopf algebroid structure on Γ (as we see by taking M =
P (n)∗), and conversely. This structure consists of a coassociative comultiplication
ψS: Γ → Γ ⊗ Γ with counit εS: Γ → P (n)∗. These behave exactly as in Adams
[Ad74] or [Bo95, Thm. 11.35]; in particular, ψS and εS are homomorphisms of P (n)∗-
bimodules and algebras. [This all works without change for p = 2; see [Bo].]

Proposition 6.12 The stable operations in P (n)-cohomology are encoded in the
Hopf algebroid Γ = P (n)∗(P (n), o) [replaced by Γ = P (n)∗(P (n), o) for p = 2].

The discussion of the structure of Γ carries over from the case K(n) in [Bo95] with
little change [except that we allow p = 2]. We even use the same test spaces.

The one-point space We already discussed this in (6.11). The coaction ρ reduces
to the ring homomorphism ηR, which is determined by the elements

wk = ηRvk ∈ Γ2(pk−1) for k ≥ n. (6.13)

Complex orientation Our next test space is complex projective space CP∞. As
P (n) inherits a complex orientation from BP (or MU), we have P (n)∗(CP∞) =
P (n)∗[[x]], the formal power series ring generated by the Chern class x = x(ξ) of the
Hopf line bundle ξ over CP∞, filtered by powers of the ideal (x).

The coaction ρ for CP∞ defines elements bj ∈ Γ2j−2 by the formula [Bo95, (13.2)]

ρx = b(x) =
∞∑
j=1

xj ⊗ bj in P (n)∗(CP∞) ⊗̂Γ ∼= Γ[[x]]. (6.14)
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Here, b(x) is a useful formal abbreviation for the right side. As always in the stable
context [ibid., Prop. 13.4], b1 = 1 and b0 = 0.

Further, the comultiplication ψS is given on bi as the coefficient of xi in

ψSb(x) =
∞∑
j=1

b(x)j ⊗ bj in (Γ⊗ Γ)[[x]], (6.15)

and εSbj = 0 for all j > 1.
Since P (n) is p-local, we need only the accelerated elements b(j) = bpj ∈ Γ2(pj−1)

for j ≥ 0, where b(0) = 1; the other b’s are expressible in terms of these and the v’s
and w’s by [ibid., Lemma 13.7].

The p-th power map ζ: CP∞ → CP∞, whose bundle interpretation is ζ∗ξ = ξ⊗p,
induces in cohomology

ζ∗x = [p](x) =
∞∑
i=N

gix
i+1 in P (n)∗(CP∞) = P (n)∗[[x]]

for certain coefficients gi ∈ P (n)2i. This formal power series is known as the p-series
for P (n). There are no lower terms as g0 = p = 0 in P (n)0. (The elements gi are
traditionally written ai, but we rename them in order to avoid confusion with other
elements, also named ai, that appear shortly.)

We need only one standard fact [RW77, Thm. 3.11(b)] about the p-series:

[p](x) ≡ vkx
pk

mod (vn, . . . , v̂k, . . .) (6.16)

for any k ≥ n, where the ideal is generated by all the v’s except vk. In words, [p](x)
contains terms vkx

pk
but not λvikx

q for any i > 1. In particular,

[p](x) = vnx
pn

+ vn+1x
pn+1

+ higher terms. (6.17)

Hence as k varies, we have

[p](x) ≡
∞∑
k=n

vkx
pk

mod V 2, (6.18)

where V denotes the maximal ideal (vn, vn+1, vn+2, . . .) ⊂ P (n)∗.
Naturality of ρ with respect to the map ζ yields the identity [Bo95, (13.11)]

b([p](x)) = [p]R(b(x)) =
∞∑
i=N

b(x)i+1ηRgi in Γ[[x]]. (6.19)

The lowest power of x that occurs is xp
n
.

Definition 6.20 For each k ≥ n, we define the k-th main stable relation (Rk) as
the coefficient of xp

k
in equation (6.19).

Since b(0) = 1, the first relation (Rn) is simply vn1 = wn, which implies that every
stable operation is vn-linear. For k > n, equation (6.18) shows that (6.19) has a term
wkx

pk
on the right, and (Rk) becomes an inductive formula for wk in terms of the v’s

and b’s and lower w’s.
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Cohomology of a lens space, for p odd Our final test space is the 2N -skeleton
L of the lens space K(Z/p, 1). Geometrically, L is the orbit space of the standard
Z/p -action on the unit sphere S2N+1 ⊂ CN+1 given as complex multiplication by
Z/p ⊂ S1 ⊂ C, with the top cell omitted by requiring the last coordinate to be real
non-negative, up to the action of Z/p. (Retaining the top cell, as in [Bo95], adds
some extra complication but offers little benefit.)

Following [Bo95, §14], its cohomology is

P (n)∗(L) =
(
E(u)⊗ TPn(x)

)/
(uxN), (6.21)

because the Atiyah–Hirzebruch spectral sequence can support no differential. Here, x
is induced from the Chern class of the Hopf line bundle on CPN , which is a quotient
space of L, and u is uniquely defined as restricting to the standard generator u1 ∈
P (n)∗(S1), where we recognize the 1-skeleton L1 of L as the circle S1.

Since x is a Chern class, the coaction ρL is given on x by naturality as ρLx = b(x).
Although L is not an H-space, there are, as in [ibid., (14.31)], partial multiplications
L2k × L2m → L on the skeletons whenever k +m = N , which imply that

ρLu = u⊗1 +
n−1∑
i=0

xp
i⊗a(i) in P (n)∗(L)⊗ Γ (6.22)

for certain elements a(i) ∈ Γ2pi−1 that this equation defines. (We warn that these
generators differ from Würgler’s [Wü77] and Yagita’s [Ya77] generators ai by the
conjugation in Γ; as a result, certain formulae become transposed. Our generators
are chosen for compatibility with [Bo95] and [Wi84], because they destabilize properly
in §§7, 10.) The element a(n) does not exist because u fails to lift to the 2pn-skeleton
of the lens space. As in [Bo95, Thm. 14.32], the coalgebra structure is given by

ψSa(k) = a(k)⊗1 +
k−1∑
i=0

bp
i

(k−i)⊗a(i) + 1⊗a(k) (6.23)

and εSa(k) = 0.

Cohomology of real projective space, for p = 2 Here, the same test space
L is better known as real projective space RP 2N . It remains true that the Atiyah–
Hirzebruch spectral sequence can support no differential, so that

P (n)∗(RP 2N) = P (n)∗[t]/(t
2N+1), (6.24)

generated by the unique nonzero element t ∈ P (n)1(RP 2N). As above, we find that

ρt = t⊗1 +
n−1∑
i=0

t2
i+1⊗a(i), (6.25)

which defines elements a(i) ∈ Γ2i+1−1. Indeed, this formula is identical to equa-
tion (6.22), since x = t2 is the Chern class of the complexified real Hopf line bundle.
Thus equation (6.23) remains valid for p = 2.

Summary Würgler [Wü77] and Yagita [Ya77] both proved that we now have
enough elements of Γ to handle all stable operations.
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Theorem 6.26 The stable operations in P (n)-cohomology are dual to the Hopf
algebroid Γ = P (n)∗(P (n), o) [replaced by P (n)∗(P (n), o) if p = 2], which is generated
as a P (n)∗-algebra by the elements b(j) and a(i) defined by equations (6.14) and (6.22)
[replaced by (6.25) if p = 2].

(a) For odd p, as a P (n)∗-algebra,

Γ = P (n)∗(P (n), o) = E(a(0), a(1), . . . , a(n−1))⊗ P (b(1), b(2), b(3), . . .);

(b) For p = 2, as a P (n)∗-algebra,

Γ = P (n)∗(P (n), o) = P (a(0), a(1), . . . , a(n−1), b(n+1), b(n+2), . . .),

and the elements b(j) for j ≤ n are given by the relations

a2
(i) = b(i+1) for 0 ≤ i ≤ n− 1; (6.27)

(c) As a left P (n)∗-module, Γ is free with a basis consisting of all monomials

aIbJ = ai0(0)a
i1
(1) . . . a

in−1

(n−1)b
j1
(1)b

j2
(2)b

j3
(3) . . . ,

with multi-indices I = (i0, i1, . . . , in−1) and J = (j1, j2, . . .) in which each ir = 0 or 1;

(d) The right P (n)∗-action on Γ is given by multiplication by the elements wk =
ηRvk, where wn = vn1 and wk is determined inductively for k > n by the main relation
(Rk) (see Definition 6.20);

(e) The comultiplication ψS: Γ → Γ⊗Γ is the P (n)∗-algebra homomorphism given
on the generators by equations (6.15) and (6.23);

(f) The counit εS: Γ → P (n)∗ is the P (n)∗-algebra homomorphism given on the
generators by εSa(i) = 0 for all i and εSb(j) = 0 for j > 0.

Proof What survives intact from Würgler [Wü77, Thm. 2.13] and Yagita [Ya77,
Lemma 3.5], even for p = 2, is (c) (using the conjugate generators to the a(i)). Parts
(a), (d), (e) and (f) need no further comment.

[In (b), commutativity is not trivial; see Nassau [Na02] or [Bo]. Since t2 is a Chern
class, (ρt)2 = ρ(t2) = b(t2). Comparing the coefficients of t2

i+2
with the help of (6.14)

and (6.25), we deduce (6.27) for i < n−1.
This argument fails for i = n−1, as t2

n+1
= 0; nevertheless, the result still holds

by [Na02, Thm. 2], which corrects [KW87]. Alternatively, the map of ring spectra
P (n) → P (n+1) in Lemma 2.7 sends each generator of Γ(n) = Γ to its namesake in
Γ(n+1). As a2

(n−1) = b(n) in Γ(n+1), the only candidates for a2
(n−1) in Γ(n) are b(n)

and b(n) + vn1. Since εS(a
2
(n−1)) = (εSa(n−1))

2 = 0, we must choose b(n).]

7 Additive operations in P (n)-cohomology

In this section, we describe the additive unstable operations in P (n)-cohomology
in the style of [BJW95], in terms of a certain bigraded algebra Q∗

∗, which, like Γ, is
a P (n)∗-bimodule equipped with a coalgebra structure (ψA, εA) (called (Q(ψ), Q(ε))
in [BJW95]) that encodes the composition of operations and the identity operation.
Although the results bear a strong formal resemblance to the stable results in §6, the
stable proofs do not carry over; instead, one has to compute the whole Hopf ring in
§11 and then take the indecomposables.
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For p odd, we define Q∗
∗ = QP (n)∗

(
P (n)

∗

)
, the algebra of indecomposables in

the Hopf ring P (n)∗
(
P (n)

∗

)
. Specifically, Qk

i denotes the group of indecomposables

in degree i of the Hopf algebra P (n)∗
(
P (n)

k

)
; its elements have total degree i − k

in Q∗
∗ (and this is the degree that governs signs). The multiplication and unit in

Q∗
∗ are induced from ◦-multiplication and the element [1] in the Hopf ring by the

homomorphisms (10.1). The left P (n)∗-module action is induced from the Hopf ring:
if v ∈ P (n)j and c ∈ Qk

i , we have vc ∈ Qk
j+i. [When p = 2, it should be no surprise

after Proposition 6.12 that the correct Hopf ring to consider is not P (n)∗
(
P (n)

∗

)
but P (n)∗

(
P (n)

∗

)
; in this case, we set Q∗

∗ = QP (n)∗

(
P (n)

∗

)
. This is the same left

P (n)∗-module as QP (n)∗
(
P (n)

∗

)
, but with slightly different multiplication.]

By [RW96, Cor. 1.5], both Q∗
∗ and the Hopf ring are free P (n)∗-modules. These

conditions ensure [BJW95, Lemma 4.16(a)] that the dual module to Q∗
∗ is indeed the

module of all additive unstable operations on P (n)-cohomology, and make available
all the machinery and results on additive operations. We thus identify:

(i) The additive unstable operation r:P (n)k(−) → P (n)m(−);

(ii) The primitive cohomology class rιk ∈ P (n)m
(
P (n)

k

)
;

(iii) The representing H-map of H-spaces r:P (n)
k
→ P (n)

m
, up to homotopy;

(iv) The P (n)∗-linear functional 〈r,−〉:Qk
∗ → P (n)∗, of degree k −m.

The action of additive operations on P (n)∗(X) is encoded in coactions

ρX :P (n)k(X) −−→ P (n)∗(X) ⊗̂Qk
∗ (7.1)

(one for each k), which are monoidal as k varies [even if p = 2].
To construct the generators of Q∗

∗, we use the same test spaces as stably in §6,
together with the circle. We record the values of ψA and εA on each generator.

Cohomology of a point The right unit ring homomorphism ηR:P (n)∗ → Q∗
0 is

just the coaction ρ for the one-point space, and so is determined by the elements

wk = ηRvk ∈ Q−2(pk−1)
0 for k ≥ n. (7.2)

We use ηR to make Q∗
∗ a right P (n)∗-module and the coactions ρX in (7.1) into a

P (n)∗-module homomorphism.

Cohomology of a circle The coaction for the circle S1 defines the suspension
element e ∈ Q1

1 by

ρu1 = u1 ⊗ e in P (n)∗(S1)⊗Q1
∗ = E(u1)⊗Q1

∗. (7.3)

As in [BJW95, Prop. 12.3(d)], ψAe = e⊗ e and εAe = 1.
Then for any j > 0, the coaction for the j-sphere Sj is given by

ρuj = uj ⊗ ej in P (n)∗(Sj)⊗Qj
∗ = E(uj)⊗Qj

∗. (7.4)

Given any additive operation r:P (n)k(−) → P (n)m(−), represented by the map

r:P (n)
k
→ P (n)

m
, where k,m > 0, we use P (n)k(Sj) ∼= πj

(
P (n)

k

)
∼= ΣkP (n)j−k to
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rewrite the induced homomorphism on homotopy groups as

r∗: Σ
kP (n)∗ ∼= π∗

(
P (n)

k

)
π∗(r)−−−−→ π∗

(
P (n)

m

)
∼= ΣmP (n)∗. (7.5)

By [BJW95, Cor. 12.4], this is given on Σkv, where v ∈ P (n)i, by the formula

r∗(Σ
kv) = Σm〈r, ek+i(ηRv)〉. (7.6)

Complex orientation The coaction for CP∞ defines elements bj ∈ Q2
2j by

ρx = b(x) =
∞∑
j=1

xj ⊗ bj in P (n)∗(CP∞) ⊗̂Q2
∗
∼= Q2

∗[[x]], (7.7)

which is formally identical to equation (6.14), except that now b1 = e2 by [BJW95,
Prop. 14.4(a)]. As in [ibid.], ψAbi is the coefficient of xi in

ψAb(x) =
∞∑
j=1

b(x)j ⊗ bj in (Q∗
∗ ⊗Q2

∗)[[x]], (7.8)

and εAbj = 0 for j > 1.
Again [ibid., Lemma 14.6], we need only the accelerated elements b(j) = bpj for

j ≥ 0, so b(0) = e2. The additive version of equation (6.19) also looks the same,

b([p](x)) = [p]R(b(x)) =
∞∑
i=N

b(x)i+1ηRgi in Q2
∗[[x]]. (7.9)

Definition 7.10 For each k ≥ n, we define the k-th main additive relation (Rk) as
the coefficient of xp

k
in equation (7.9).

In view of equation (6.17), the first two main relations are simply

(Rn) bp
n

(0)wn = vnb(0) in Q2
∗ (7.11)

and
(Rn+1) bp

n

(1)wn + bp
n+1

(0) wn+1 = vn+1b(0) + vpnb(1) in Q2
∗. (7.12)

We shall find in equation (10.10) that (Rn) desuspends once to

(R′
n) ebN(0)wn = vne in Q1

∗. (7.13)

By equation (6.18), the general main relation for k ≥ n has the form

(Rk)
k∑
i=n

bp
i

(k−i)wi ≡ 0 in Q2
∗ mod V + W2, (7.14)

where V = (vn, vn+1, vn+2, . . .) and W = (wn, wn+1, wn+2, . . .) denote ideals in Q∗
∗.

Cohomology of a lens space Our last test space is the lens space skeleton L,
whose cohomology is given by equation (6.21), assuming p is odd. We already know
ρLx = b(x) from equation (7.7). For u, we find, as in [BJW95, (16.21)], that

ρLu = u⊗e+
n−1∑
i=0

xp
i⊗a(i) in P (n)∗(L)⊗Q1

∗ (7.15)
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for certain elements a(i) ∈ Q1
2pi that this equation defines. We deduce that

ψAa(k) = a(k) ⊗ e+
k∑
i=0

bp
i

(k−i) ⊗ a(i) (7.16)

and εAa(k) = 0.
[If p = 2, L = RP 2N has different cohomology (6.24), and we replace equa-

tion (7.15) by

ρt = t⊗ e+
n−1∑
i=0

t2
i+1 ⊗ a(i) in P (t)/(t2N+1)⊗Q1

∗. (7.17)

Nevertheless, equation (7.16) and εAa(k) = 0 remain valid for p = 2. By [Bo], equa-
tion (6.27) destabilizes in the obvious way, to

a2
(i) = b(i+1) for 0 ≤ i ≤ n− 1.] (7.18)

More relations We shall find in equation (10.14) that one more suspension factor
can be squeezed out of (7.13) if we first multiply by a(0), to give

(R′′
n) a(0)b

N
(0)wn = vna(0) in Q1

∗. (7.19)

[When p = 2, we can multiply this by another a(0) and use equation (7.18) to obtain
the unexpected formula

bN(0)b(1)wn = vnb(1). (7.20)

This is not all; if we multiply (Rn+1) (7.12) by bN(0), we obtain the reduction formula

bN+2n+1

(0) wn+1 = v2
nb
N
(0)b(1) + vnb

2n

(1) + vn+1b
2n

(0), (7.21)

by using (7.20) to simplify one of the terms.]

Summary We have the additive version of the Hopf algebroid Γ.

Theorem 7.22 The additive unstable operations in P (n)-cohomology are dual to

the P (n)∗-algebra Q∗
∗ = QP (n)∗

(
P (n)

∗

)
[replaced by QP (n)∗

(
P (n)

∗

)
if p = 2],

which has the properties:

(a) Q∗
∗ is the commutative bigraded P (n)∗-algebra generated by the elements:

wk ∈ Q−2(pk−1)
0 for k ≥ n, defined by ηR in equation (7.2);

e ∈ Q1
1, the suspension element, defined by equation (7.3);

b(j) ∈ Q2
2pj for j ≥ 0, defined by equation (7.7);

a(i) ∈ Q1
2pi for 0 ≤ i < n, defined by (7.15) [replaced by (7.17) if p = 2];

subject to the relations e2 = b(0), the main relations (Rk) for k > n (see Defini-
tion 7.10), and the two variants (7.13) and (7.19) of (Rn) [also (7.18) if p = 2];

(b) Q∗
∗ is a free left P (n)∗-module;

(c) Multiplication by the elements wk makes Q∗
∗ a right P (n)∗-module;

(d) The comultiplication ψA:Q∗
∗ → Q∗

∗⊗Q∗
∗ is the homomorphism of algebras and

of P (n)∗-bimodules given on each generator as noted above;

(e) The counit εA:Q∗
∗ → P (n)∗ is the P (n)∗-algebra homomorphism given on

generators by εAe = 1, εAa(i) = 0, εAb(j) = 0 for j > 0, εAb(0) = 1, and εAwk = vk.
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Parts (c), (d) and (e) need no further comment. Part (b) is included in Theo-
rem 8.4. Part (a) can be read off from Theorem 11.1. [For commutativity when p = 2,
we refer to [Bo].]

We recall [BJW95, (6.3)] the stabilization homomorphism Q(σ):Qk
∗ → Γ, which

has degree zero. We may use it to recover the structure on Γ in Theorem 6.26 from
Q∗
∗ simply by setting e = 1. The coalgebra structure (ψA, εA) stabilizes to (ψS, εS).

8 Relations for additive operations

We noted in Theorem 7.22 that Q∗
∗ is a free P (n)∗-module, which is not at all

obvious from the generators and relations given. In this section, we exhibit a basis of
Q∗
∗ and prove in Lemma 8.5 that it spans the module.

We also establish some direct applications of additive operations.

The Ravenel–Wilson basis Since e2 = b(0) and a2
(i) = 0 trivially if p is odd

[replaced by a2
(i) = b(i+1) if p = 2, from equation (7.18)], any monomial in the listed

generators of the P (n)∗-algebra Q∗
∗ can be written in the abbreviated form

eεaIbJwK = eεai0(0)a
i1
(1) . . . a

in−1

(n−1)b
j0
(0)b

j1
(1)b

j2
(2) . . . w

kn
n w

kn+1

n+1 w
kn+2

n+2 . . . , (8.1)

with multi-indices I = (i0, i1, . . . , in−1), J = (j0, j1, j2, . . .), and K = (kn, kn+1, . . .),
where each ir, also ε, is 0 or 1. (We keep the w’s to the right, as a reminder that they
define the right action of P (n)∗ on Q∗

∗.) We introduce the following parameters:

The b-length is
∑
r jr, the total number of factors of the form b(j);

The w-length is
∑
r kr, the total number of factors of the form wk.

As with BP in [RW77], it is easier to specify which monomials are not wanted in
forming the basis than those which are. [For p = 2, the basis is not written out in
detail in [RW96], and contains some surprises.] There are two variants; we shall need
the second in §§10, 11.

Definition 8.2 We call the monomial (8.1) Q-allowable if it does not have any of
the following forms [note that (iv) and (v) apply only if p = 2]:

(i) bp
n

(dn)b
pn+1

(dn+1) . . . b
pq

(dq)wqc, with 0 ≤ dn ≤ dn+1 ≤ . . . ≤ dq, q ≥ n;

(ii) ebN(0)b
pn+1

(dn+1) . . . b
pq

(dq)wqc, with 0 ≤ dn+1 ≤ . . . ≤ dq, q ≥ n;

(iii) a(0)b
N
(0)b

pn+1

(dn+1) . . . b
pq

(dq)wqc, with 0 ≤ dn+1 ≤ . . . ≤ dq, q ≥ n;

(iv) bN(0)b(1)b
2n+1

(dn+1) . . . b
2q

(dq)wqc, where p = 2, with 0 ≤ dn+1 ≤ . . . ≤ dq,
q ≥ n;

(v) bN+2n+1

(0) b2
n+2

(dn+2) . . . b
2q

(dq)wqc, where p = 2, with 0 ≤ dn+2 ≤ . . . ≤ dq,
q ≥ n+ 1;

(8.3)

where c is any monomial (c = 1 is permitted) in the generators e, a(i), b(j), and wk.
More generally, we call the monomial allowable if it is not of the form (i) or (ii).
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Remark In [RW96], a monomial is called n-allowable (lies in An) if it is not of the
form (i). If it contains a factor e or a(0), it is called n-plus allowable (lies in A+

n ) if it
is not of the form (i), (ii) or (iii).

From [RW96, Thm. 1.3], we have the Ravenel–Wilson basis of Q∗
∗.

Theorem 8.4 (Ravenel–Wilson) The Q-allowable monomials (8.1) form a basis of

the free P (n)∗-module Q∗
∗ = QP (n)∗

(
P (n)

∗

)
[or QP (n)∗

(
P (n)

∗

)
if p = 2].

Later in this section, we shall reprove half the theorem.

Lemma 8.5 The relations e2 = b(0), the main relations (Rk) for k > n, [relation
(7.18) if p = 2,] and the variants (7.13) and (7.19) of (Rn) imply that the Q-allowable

monomials (8.1) span the P (n)∗-module Q∗
∗ = QP (n)∗

(
P (n)

∗

)
[or QP (n)∗

(
P (n)

∗

)
if p = 2].

Generators of cohomology Just as in [BJW95, Thm. 20.2], Theorem 1.16 follows
directly from the fact that the additive operations on P (n)−k(−) form the P (n)∗-dual
of the free P (n)∗-module Q−k

∗ , whose generators all lie in groups Q−k
j with j ≥ 0.

We combine the following two lemmas, which correspond to Theorem 20.3 and
Lemma 20.5 of [ibid.]. We study the linear functional εA = 〈ι−k,−〉:Q−k

∗ → P (n)∗
defined by the identity operation ι−k on P (n)−k(−), which is plainly additive.

Lemma 8.6 Given any integer k > 0, there exist:

(i) a sequence of additive unstable operations ri:P (n)−k(−) → P (n)m(i)(−)
with m(i) ≥ 0;

(ii) a sequence of elements v(i) ∈ P (n)∗ with deg(v(i)) →∞;

such that in any additively unstable P (n)-cohomology comodule M (e. g. P (n)∗(X)
for any space X), any x ∈M−k decomposes as the (topological infinite) sum

x =
∑
i

v(i)rix.

Proof Let {c1, c2, c3, . . .} be the Ravenel–Wilson (or any other) basis of the free
P (n)∗-module Q−k

∗ , with ci ∈ Q−k
m(i). Trivially, m(i) ≥ 0. For fixed x ∈M−k and any

additive operation r, the linearity of rx in r may be expressed, as in [BJW95, (6.39)],
by the formula

rx =
∑
i

〈r, ci〉rix, (8.7)

where ri denotes the operation dual to ci. We take r = ι−k, put v(i) = 〈ι−k, ci〉, and
note that deg(v(i)) = m(i) + k →∞.

Remark The coefficients are readily computed: v(i) = εAci = vK if the monomial ci
has the form eεbj(0)w

K , and v(i) = 0 otherwise. Thus many terms are zero.

To get the more precise information for Theorem 1.16, we write the space X as
the disjoint union of its components and reduce to the case when X is connected.
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Lemma 8.8 Let M be a connected (see [BJW95, Defn. 7.14]) additively unstable
P (n)-cohomology algebra (e. g. P (n)∗(X) for any connected space X). Then as a
topological P (n)∗-module, M is generated by 1M ∈M0 and elements of M i for i > 0.
The generator 1M is never redundant.

Proof Let L be the submodule generated (topologically) by the elements of all the
M i for i > 0. By Lemma 8.6, we need only consider x ∈ M0. We choose a basis
{c1, c2, c3, . . .} of Q0

∗ with c1 = 1.
We recall from [BJW95, Defn. 7.13] the collapse operation κj on P (n)j(−) for any

j; since M is connected, on any x ∈ M j it satisfies κjx = v1M for some v ∈ P (n)−j.
But (8.7) gives κ0x ≡ r1x mod L and also x = ι0x ≡ r1x mod L. Thus x ≡ κ0x =
λ1M mod L for some λ ∈ Fp.

Since κL = 0 and κ01M = 1M , 1M never lies in L.

Higher-order relations The proof of Lemma 8.5 resembles that of [BJW95,
Thm. 18.16]. The Nakayama Lemma [Bo95, §15] (which is easier for P (n)∗ than
for BP∗, as p = 0) allows us to work throughout modulo the ideal V ⊂ Q∗

∗. We also
work modulo powers of W. (These ideals were introduced in equation (7.14), which
displays the w-linear terms in the relation (Rk).)

When q = n and c = 1, we observe that (8.3)(i) is the first term in (Rdn+n), and is
thus expressible by equation (7.14) in terms of Q-allowable monomials mod V+W 2.
Equation (7.13) shows that (R′

n) takes care of (ii), while (7.19) shows that (R′′
n) takes

care of (iii). [If p = 2, we use (7.20) and (7.21) to handle (iv) and (v).]
Otherwise, the relations (Rk) are not at all transparent. We handle the general

disallowed monomial (8.3)(i) by eliminating the q − n variables wn, wn+1, . . . , wq−1

from the q−n+1 relations (Rdn+n), (Rdn+1+n+1), . . . , (Rdq+q), expressed in the form
(7.14), to obtain the higher-order derived relation

∆qwq +
∑
r>q

∆rwr ≡ 0 mod V + W 2, (8.9)

for certain determinants ∆r. Explicitly, for any r ≥ q,

∆r =
∑
π

επb
pπn

(dn+n−πn) . . . b
pπ(q−1)

(dq−1+q−1−π(q−1))b
pπr

(dq+q−πr), (8.10)

where we sum over all permutations π of {n, . . . , q−1, r}, write επ for the sign of π,
and adopt the convention that meaningless factors b(j) with j < 0 are taken as 0.

We order the b -monomials lexicographically (bJ < bK if and only if there exists
t ≥ 0 such that jr = kr for all r < t, and jt < kt).

Lemma 8.11 For any r ≥ q, the determinant ∆r in (8.10) has the form

∆r = bp
n

(dn)b
pn+1

(dn+1) . . . b
pq−1

(dq−1)b
pr

(dq+q−r) + higher terms.

Proof The displayed term is the diagonal term with π = id. For any other permu-
tation π, there is a first index t such that πt > t, so that n ≤ t ≤ q − 1 and πk = k

for all k < t. The corresponding term επb
pn

(dn) . . . b
pt−1

(dt−1)b
pπt

(dt+t−πt) . . . in (8.10) is higher,
because dt + t− πt < dt.
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Proof of Lemma 8.5 We show that each Q-disallowed monomial in (8.3) is a linear
combination mod V of higher monomials with the same w-length, and monomials of
greater w-length, where we partially order all monomials according to the factor bJ

(and ignore e, a(i), and wk). Since there are only finitely many monomials in each
bidegree, the result follows.

For (8.3)(i), Lemma 8.11 shows that we can use (8.9) to express bp
n

(dn) . . . b
pq

(dq)wq
as a linear combination mod V of higher monomials and monomials with w-length
≥ 2, since for r > q, the diagonal term of ∆r is higher than the diagonal term of ∆q.
Multiplication by c preserves the ordering.

For (ii), (iii) [and (iv), if p = 2], we modify equation (8.9) by eliminating the
variables wn+1, . . . , wq−1 from the relations (Rdn+1+n+1), . . . , (Rdq+q) to obtain

∆′
nwn + ∆′

qwq +
∑
r>q

∆′
rwr ≡ 0 mod V + W 2.

When we multiply by ebN(0)c, the first term drops out by (7.13). Lemma 8.11, slightly
modified (or with n replaced by n+ 1), shows that (ii) is the lowest of the remaining
terms. If we multiply by a(0)b

N
(0)c instead and use (7.19), we obtain (iii). [For (iv), we

multiply by bN(0)b(1)c and use (7.20).]
[For (v), we eliminate the variables wn+2, . . . , wq−1 from the relations (Rdn+2+n+2),

. . . , (Rdq+q) to obtain a higher-order relation

∆′′
nwn + ∆′′

n+1wn+1 + ∆′′
qwq +

∑
r>q

∆′′
rwr ≡ 0 mod V + W 2.

When we multiply this by bN+2n+1

(0) c, the first two terms drop out by (7.11) and (7.21).
The diagonal term in the determinant ∆′′

q gives (v).]

The first higher-order relation The first relation for a given q, where we elimi-
nate wn, wn+1, . . . , wq−1 from (R′

n), (Rn+1), . . . , (Rq), is particularly important. The
additive version for P (n) of Bendersky’s Lemma [Be86, Thm. 6.2] (or see [BJW95,
Lemma 18.23]) gives more precise information than our proof of Lemma 8.5, and
follows immediately from Lemma 12.2.

We recall the ideal Iq = (vn, vn+1, . . . , vq−1) ⊂ P (n)∗ (where In = (0)).

Lemma 8.12 In Q∗
∗ = QP (n)∗

(
P (n)

∗

)
[replaced by QP (n)∗

(
P (n)

∗

)
if p = 2], we

have the relation

eg(n,q)−1wq ≡ vqe
g(n,q−1)+1 mod IqQ

∗
∗ for q ≥ n. (8.13)

[If p = 2, this is almost superseded by the relation

eg(n,q)−2wq ≡ vqe
g(n,q−1) mod IqQ

∗
∗ for q ≥ n+ 1.] (8.14)

Primitive elements Let M be an unstable P (n)-cohomology comodule (in the
sense of [BJW95, Defn. 6.32]). An element x ∈ Mk is called (additively unstably)
primitive if the coaction ρM has the value ρMx = x⊗ek on x. Then for any v ∈ P (n)∗,

ρM(vx) = x⊗ ek(ηRv). (8.15)

Of course, all this requires k ≥ 0, but more is true, as in [ibid., Lemma 20.8].
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Lemma 8.16 Let x ∈ Mk be a nonzero primitive element of the unstable P (n)-
cohomology comodule M , and assume q ≥ n.

(a) If Iqx = 0 and k satisfies the condition (depending on p and q):

(i) k ≥ g(n, q)− 1 if p is odd or q = n;

(ii) k ≥ g(n, q)− 2 if p = 2 and q ≥ n+ 1;
(8.17)

then vqx is primitive (possibly zero);

(b) If k does not satisfy the condition (8.17), then for all i > 0, viqx is nonzero and
is not primitive.

Proof For (a), (8.15) gives ρ(vqx) = x⊗ ekwq. By Lemma 8.12, this is the same as
x⊗ vqe

k−2(pq−1) = vqx⊗ ek−2(pq−1), since Iqx = 0.
For (b), we have ρ(viqx) = x⊗ ekwiq. Here, ekwiq is Q-allowable by (8.3) and hence

a basis element of Q∗
∗, which shows that viqx is not primitive.

Proof of Lemma 1.17 We must have ρx = x⊗ek. If m > n, we have vm−1x = 0, and
case (b) of Lemma 8.16 with q = m− 1 does not apply; hence the lower bound on k.

Conversely, (8.15) specifies the coaction on all of M , and Lemma 8.12 shows it is
well defined.

Proof of Theorem 1.18 We build an increasing sequence

0 = M0 ⊂M1 ⊂M2 ⊂ . . . ⊂M

of subcomodules of M . For each i > 0, just as in the proof of Theorem 20.11 in
[BJW95], we construct a primitive element xi ∈M/Mi−1 with Ann(xi) = Imi

for some
mi, using Lemma 8.16 in place of Lemma 20.8 of [ibid.]. We take Mi/Mi−1 ⊂M/Mi−1

as the P (n)∗-submodule generated by xi. Lemma 1.17 describes Mi/Mi−1.
Because each ki ≥ 0 in Theorem 1.18 and each Mk is a finitely generated Fp-

module, this sequence must terminate after finitely many steps. We deduce that M
is a finitely presented P (n)∗-module.

9 Idempotent operations

Lemma 9.1 delivers the promised additive idempotent operations θ(m) in P (n)-
cohomology that we need for Lemma 5.1, which is equivalent to Lemma 3.1. In fact,
we find a large class of θ(m), among which none seems to be preferred. The rest of
this section applies the work in §8 to prove Lemma 9.1.

Lemma 9.1 Assume that k ≤ g(n,m) [replaced by k ≤ g(n,m)− 1 if p = 2], where
m ≥ n. Then there exists an additive idempotent operation θ(m) on P (n)k(−) having
the following properties:

(i) The image of the operation θ(m) is represented by the space P (n,m)
k
;

(ii) The map θ(m):P (n)
k
→ P (n)

k
factors to yield an H-space splitting

θ(m):P (n,m)
k
→ P (n)

k
of the canonical H-map ρ(m):P (n)

k
→ P (n,m)

k
;

(iii) For all spaces X, θ(m) naturally embeds P (n,m)∗(X) ⊂ P (n)∗(X) as a
summand, in the sense of abelian groups (but not as P (n)∗-modules).
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Remark Exactly as in [BJW95, end of §22], we can make the splittings θ(m) com-
patible as k and m vary if we wish. The decomposition factors of P (n)

k
resulting

from this approach must of course be the same as in Theorem 1.12, according to
Theorem 1.2(b), but the injection maps are different, in general.

However, we emphasize that the splitting theorems as stated in §§1, 5 do not
require any compatibility.

The ideals Jm As in [BJW95], the ideal Jm = (vm+1, vm+2, . . .) ⊂ P (n)∗, introduced
in equation (1.8), gives rise to an analogous ideal for the right action of P (n)∗ on Q∗

∗.

Definition 9.2 Given any m ≥ n, we define the ideal

Jm = (wm+1, wm+2, wm+3, . . .) ⊂ Q∗
∗.

We need to know how Jm sits inside Q∗
∗. As in [ibid.], the answer is remarkably

clean, in a certain range.

Lemma 9.3 For k ≤ g(n,m) [replaced by k ≤ g(n,m) − 1 if p = 2], Qk
∗ ∩ Jm is the

left P (n)∗-submodule of Qk
∗ spanned by all the Q-allowable monomials (8.1) that lie

in it and contain an explicit factor wq for some q > m.

Remark By Lemma 8.12, vm+1eb
g(n,m)/2
(0) − z lies in Jm, where z ∈ Im+1Q

∗
∗, so the

result definitely fails for k = g(n,m) + 1 [also for k = g(n,m) if p = 2].

Proof Any monomial that contains wh with h > m visibly lies in Jm. To show the
converse, we fix k and i0 and prove by downward induction on h that for all i ≤ i0, all
elements in Qk

i of the form cwh lie in the indicated P (n)∗-submodule. This statement
is trivial for sufficiently large h (depending on k and i0).

We therefore choose q > m, assume the statement holds for all h > q, and prove
it for h = q. Take cwq ∈ Qk

i , where i ≤ i0, so that c ∈ Qk+2(pq−1)
i . By Lemma 8.5, we

may reduce to the case where c is a Q-allowable monomial. We note that in (8.3),
the Q-disallowed monomials (i) and (iv) have b -length 1

2
g(n, q), while (ii), (iii) and

(v) have b -length 1
2
g(n, q)− 1.

Case 1: c has no factor e, a(0), or wj. For odd p, the b -length of c is at most
1
2
(k + 2(pq−1)) ≤ 1

2
(g(n,m) + 2pq − 2) < 1

2
g(n, q),

which makes cwq also Q-allowable, as only rule (i) of (8.3) is relevant. [If p = 2, we
need to assume k ≤ g(n,m)− 1 to get the stronger bound 1

2
g(n, q)− 1.]

Case 2: c = ey or c = a(0)y, where y has no factor wj. In this case, the b -length
of c is at most

1
2
(k − 1 + 2(pq−1)) ≤ 1

2
(g(n,m) + 2pq − 3) < 1

2
g(n, q)− 1,

which makes cwq automatically Q-allowable.
Case 3: c = ywj, where j ≤ q. Then cwq remains Q-allowable, by the form of

Definition 8.2.
Case 4: c = ywj, where j > q. By induction, cwq = (ywq)wj lies in the indicated

submodule.

Linear functionals To establish Lemma 9.1, we actually construct the associated
P (n)∗-linear functional 〈θ(m),−〉:Qk

∗ → P (n)∗.
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Lemma 9.4 Assume the linear functional 〈θ(m),−〉:Qk
∗ → P (n)∗ corresponding to

the additive operation θ(m):P (n)k(−) → P (n)k(−) satisfies the conditions:

(i) 〈θ(m), Qk
∗ ∩ Jm〉 = 0;

(ii) 〈θ(m), c〉 ≡ εAc mod Jm for all c ∈ Qk
∗;

(9.5)

where εA:Qk
∗ → P (n)∗ is the augmentation. Then:

(a) The homology homomorphism Q(θ(m)∗):Q
k
∗ → Qk

∗ induced by the represent-
ing map θ(m):P (n)

k
→ P (n)

k
satisfies

(i) Q(θ(m)∗)(Q
k
∗ ∩ Jm) = 0;

(ii) Q(θ(m)∗) ≡ id:Qk
∗ → Qk

∗ mod Jm;

(b) Q(θ(m)∗) induces a splitting of the short exact sequence

0 −−→ Qk
∗ ∩ Jm −−→ Qk

∗ −−→ Qk
∗/(Q

k
∗ ∩ Jm) −−→ 0

of left P (n)∗-modules;

(c) The operation θ(m) is idempotent and has the properties listed in Lemma 9.1.

Proof The proof is patterned after that of Lemma 22.2 in [BJW95]. We require the
commutative diagram

Qk
∗ Q∗

∗ ⊗Qk
∗ Q∗

∗ ⊗ P (n)∗ Q∗
∗

Qk
∗/Jm Q∗

∗ ⊗Qk
∗/Jm Q∗

∗ ⊗ P (n)∗/Jm Q∗
∗/Jm

-
ψA

?

q′

?

-
id⊗〈θ(m),−〉

-λR

? ?

q′

-
ψA -id⊗εA

���
����*

-λR

of P (n)∗-module homomorphisms, where ψA, εA and λR denote quotients of ψA, εA,
and the right action λR of P (n)∗ on Q∗

∗, Q
k
∗/Jm is really Qk

∗/(Q
k
∗ ∩ Jm), and the

vertical arrows are the obvious projections. The conditions (9.5) on 〈θ(m),−〉 are
exactly what we need to fill in the diagonal.

By [BJW95, Lemma 6.51(c)], the top row gives the homology homomorphism
Q(θ(m)∗), while by [ibid., (6.31)], the bottom row reduces to the identity homomor-
phism of Qk

∗/Jm. Thus the diagonal provides a splitting we call j′:Qk
∗/Jm → Qk

∗
that satisfies j′ ◦q′ = Q(θ(m)∗) and q′ ◦j′ = id and so yields (a). Part (b) is merely a
restatement of (a).

It follows by faithfulness that θ(m) is an idempotent operation, so that the image
h(−) = θ(m)P (n)k(−) ⊂ P (n)k(−) is an ungraded cohomology theory. By [Bo95,
Thm. 3.6], h(−) is represented (on Ho) by some H-space Y , and the additive oper-
ations h(−) ⊂ P (n)k(−) and θ(m):P (n)k(−) → h(−) are represented by H-maps
j:Y → P (n)

k
and q:P (n)

k
→ Y respectively, that satisfy j ◦q = θ(m) and q◦j = id.

To finish (c), we apply the homotopy group functor π∗(−) to obtain homomor-

phisms q∗: π∗
(
P (n)

k

)
→ π∗(Y ) and j∗: π∗(Y ) → π∗

(
P (n)

k

)
that satisfy q∗◦j∗ = id

and j∗◦q∗ = θ(m)∗. Recall that π∗
(
P (n)

k

)
∼= ΣkP (n)∗. Given v ∈ P (n)i, (7.6)
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evaluates θ(m)∗Σ
kv = Σk〈θ(m), ek+i(ηRv)〉. Then (9.5)(i) yields θ(m)∗Σ

kv = 0
if v ∈ Jm, while for any v, (ii) gives θ(m)∗Σ

kv ≡ Σkv mod Jm. It follows that
ρ(m)◦j:Y → P (n,m)

k
induces an isomorphism of homotopy groups and is therefore

a homotopy equivalence. To establish the properties listed in Lemma 9.1, we put
θ(m) = j ◦g, where g:P (n,m)

k
→ Y is a homotopy inverse to ρ(m)◦j.

Proof of Lemma 9.1 Lemma 9.3 makes it obvious that linear functionals 〈θ(m),−〉
exist that satisfy the conditions (9.5), so that Lemma 9.4 applies.

Remark As an explicit example, choose 〈θ(m),−〉 on the Ravenel–Wilson basis as
〈θ(m), c〉 = vK if c has the form eεbj(0)w

K but contains no factor wk with k > m, and
〈θ(m), c〉 = 0 otherwise. To determine 〈θ(m), c〉 for c not in the basis, we must first
express c in terms of the basis.

10 Unstable operations in P (n)-cohomology

In this section, we use all unstable operations in P (n)-cohomology to obtain

generators and relations for the Hopf ring P (n)∗
(
P (n)

∗

)
, in the style of [BJW95]. The

two multiplications are c∗d = µ∗(c×d) and c◦d = φ∗(c×d), induced respectively by the
maps µ:P (n)

k
× P (n)

k
→ P (n)

k
and φ:P (n)

k
× P (n)

m
→ P (n)

k+m
that represent

addition and multiplication in P (n)-cohomology, and 1k will denote the ∗-identity

element of P (n)∗
(
P (n)

k

)
. [If p = 2, we use the Hopf ring P (n)∗

(
P (n)

∗

)
instead,

replacing c× d by c× d in both multiplications.] We still assume that 0 < n <∞.
We deduce the results of §7 on additive operations by applying the homomorphism

qk:P (n)∗
(
P (n)

k

)
−−→ Qk

∗, (10.1)

which neglects 1k and decomposables, shifts degrees by −k, and (as k varies) takes
◦-products to products (with a sign, on account of the degree shift). However, the
Hopf ring structure maps ψ and ε are unrelated to ψA and εA.

Since the Hopf ring is a free P (n)∗-module by [RW96, Cor. 1.5], Theorem 4.14 of
[BJW95] allows us to identify:

(i) The cohomology operation r:P (n)k(−) → P (n)m(−);

(ii) The cohomology class r(ιk) ∈ P (n)m
(
P (n)

k

)
;

(iii) The representing map of spaces r:P (n)
k
→ P (n)

m
, up to homotopy;

(iv) The P (n)∗-linear functional 〈r,−〉:P (n)∗
(
P (n)

k

)
→ P (n)∗ of degree −m

[or 〈r,−〉:P (n)∗

(
P (n)

k

)
→ P (n)∗ if p = 2].

Hopf rings for p = 2 When p = 2, P (n)∗
(
P (n)

∗

)
and P (n)∗

(
P (n)

∗

)
are not Hopf

rings in the ordinary sense (though H∗
(
P (n)

∗
; F2

)
is one, and is described in [BW01]

and after Theorem 11.8). (A few things are simpler: there are no signs and χ is the
identity.) Because P (n) is not commutative, all Hopf ring axioms that shuffle factors
must be modified to use the commutativity isomorphism TQ of equation (2.11), which
results in extra terms; see §2 or [Bo] for details. Neither multiplication is commutative
in the ordinary sense, nor is ψ cocommutative.
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As a P (n)∗-module, the Hopf ring P (n)∗

(
P (n)

∗

)
is identical to P (n)∗

(
P (n)

∗

)
.

The choice of multiplication on P (n) does not affect the P (n)∗-module structure on

P (n)∗

(
P (n)

∗

)
, nor does it affect the ◦-generators that we construct below. However,

switching to the other good multiplication on P (n) replaces c◦d = φ∗(c×d) by

φ∗(c×d) = φ∗T∗(c×d) = φ∗(d×c) = d◦c,

which is different in general; and similarly for c ∗ d.

The Cartan formulae Assume first that p is odd. Given a cohomology class
x ∈ P (n)k(X), we encode the action of operations on x by a formula of the form

r(x) =
∑
α

〈r, cα〉xα for all r,

for suitable choices cα ∈ P (n)∗
(
P (n)

k

)
and xα ∈ P (n)∗(X). (Here and elsewhere, we

mean all operations r that have the correct domain degree. The sum may be infinite
if X is not finite-dimensional.) Similarly, given y ∈ P (n)m(X), suppose

r(y) =
∑
β

〈r, dβ〉yβ for all r.

Then the two Cartan formulae [BJW95, (10.23) and (10.36)] are:

r(x+ y) =
∑
α

∑
β

(−1)deg(xα) deg(yβ)〈r, cα ∗ dβ〉xαyβ (10.2)

and
r(xy) =

∑
α

∑
β

(−1)deg(xα) deg(yβ)〈r, cα◦dβ〉xαyβ. (10.3)

We use them repeatedly without further reference.

The case p = 2 Examination reveals that the proof of the Cartan formulae in
[BJW95] relies on the identity 〈x×y, a×b〉 = ±〈x, a〉〈y, b〉, which is false for p = 2;
we must replace a × b by a× b and use equation (2.15) instead. When we use the

Hopf ring P (n)∗

(
P (n)

∗

)
, both Cartan formulae remain valid as stated.

Cohomology of a point Our first test space is the one-point space. For each
v ∈ P (n)q, the Hopf ring element [v] ∈ P (n)0

(
P (n)

−q

)
[or P (n)0

(
P (n)

−q

)
if p = 2]

is defined by the identity

r(v) = 〈r, [v]〉 in P (n)∗(point) = P (n)∗, for all r. (10.4)

The properties of these elements were listed in [BJW95, Prop. 11.2]. As [v + v′] =
[v] ∗ [v′] and [vv′] = [v]◦[v′], we are primarily interested in the elements

[vk] ∈ P (n)0

(
P (n)

−2(pk−1)

)
for k ≥ n

[or in P (n)0

(
P (n)

−2(2k−1)

)
if p = 2]. Then (10.1) maps [vk] to wk.

We have the important relation

[1]∗p = [p] = [00] = 10. (10.5)



§10 Unstable operations in P (n)-cohomology 37

Cohomology of a circle Our second test space is the circle S1. The suspension
element e = e1 ∈ P (n)1

(
P (n)

1

)
[or P (n)1

(
P (n)

1

)
if p = 2] is defined by the action

of operations r on the standard generator u1 ∈ P (n)1(S1),

r(u1) = 〈r, 11〉1S + 〈r, e〉u1 in P (n)∗(S1) = E(u1), for all r. (10.6)

The properties of e were listed in [BJW95, Prop. 13.7].

Complex orientation Our third test space is CP∞. The Hopf ring elements bj ∈
P (n)2j

(
P (n)

2

)
[or P (n)2j

(
P (n)

2

)
if p = 2] for j ≥ 0 are defined by the identity

r(x) = 〈r, b(x)〉 =
∞∑
j=0

〈r, bj〉xj in P (n)∗(CP∞) ∼= P (n)∗[[x]], for all r, (10.7)

where b(x) is a convenient formal abbreviation for
∑
j bjx

j. Their properties were
listed in [BJW95, Prop. 15.3]. In particular, b0 = 12 is now nonzero and b1 = −e◦e.
Again, the accelerated elements b(j) = bpj ∈ P (n)2pj

(
P (n)

2

)
[or in P (n)2j+1

(
P (n)

2

)
if p = 2] suffice, as [ibid., Lemma 15.9] shows how to express the other b’s inductively
in terms of these and the v’s and [v]’s.

Naturality of equation (10.7) with respect to the p-th power map ζ: CP∞ → CP∞,
with massive use of the Cartan formulae, yields the identity

b([p](x)) =
∞∗
i=N

{b(x)◦i+1◦[gi]} in P (n)∗
(
P (n)

2

)
[[x]] (10.8)

[or in P (n)∗

(
P (n)

2

)
[[x]] if p = 2], as in [ibid., (15.14)]. The lowest power of x that

occurs is still xp
n
, apart from the term 12 on each side.

Definition 10.9 For each k ≥ n, we define the k-th main unstable relation (Rk) as
the coefficient of xp

k
in equation (10.8).

The first relation is simply

(Rn) vnb(0) = b
◦pn

(0)
◦[vn] in P (n)∗

(
P (n)

2

)
[or in P (n)∗

(
P (n)

2

)
if p = 2]. By [RW96, Prop. 2.1(j)], it desuspends once to

(R′
n) vne = e◦b◦N(0) ◦[vn] in P (n)∗

(
P (n)

1

)
(10.10)

[or in P (n)∗

(
P (n)

1

)
if p = 2]. The second relation is almost as easy, in view of

equation (6.17):

(Rn+1) b
◦pn

(1)
◦ [vn] + b

◦pn+1

(0)
◦ [vn+1] = vpnb(1) + vn+1b(0). (10.11)

Cohomology of a lens space, for p odd Our final test space is the lens space
skeleton L, whose cohomology (6.21) has two generators u and x. As x is a Chern
class, equation (10.7) gives r(x) by naturality. We define Hopf ring elements ai and
ci by the identity

r(u) =
N∑
i=0

〈r, ai〉xi +
N−1∑
i=0

〈r, ci〉uxi in P (n)∗(L), for all r. (10.12)
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Not by coincidence, their formal properties are exactly the same as in the case E =
K(n) of [BJW95]. The formal abbreviation a(x) =

∑
i aix

i is convenient.

Proposition 10.13 For p odd, the Hopf ring elements ai ∈ P (n)2i

(
P (n)

1

)
(for

0 ≤ i < pn), a(i) = api ∈ P (n)2pi

(
P (n)

1

)
(for 0 ≤ i < n), and ci ∈ P (n)2i+1

(
P (n)

1

)
(for 0 ≤ i ≤ pn − 2) defined by equation (10.12) have the following properties:

(a) a0 = 11 and c0 = e;

(b) ψak =
∑
i+j=k ai ⊗ aj;

(c) εai = 0 for all i > 0, in particular, εa(i) = 0 for all i;

(d) ai ∗ aj =
(
i+j
i

)
ai+j, provided i+ j < pn;

(e) a∗p(i) = 0 for 0 ≤ i < n− 1;

(f) χai = (−1)iai, in particular, χa(i) = −a(i);

(g) ci = e ∗ ai;
(h) a(i)◦a(j) = −a(j)◦a(i);

(i) a(i)◦a(i) = 0;

(j) For all r, r∗ak is the coefficient of xk in the formal identity

r∗a(x) =
N∗
i=0
{b(x)◦i ◦ [〈r, ai〉]} ∗

N−1∗
i=0
{a(x) ◦b(x)◦i ◦ [〈r, ci〉]}

in P (n)∗
(
P (n)

∗

)
[x]/(xp

n
).

Proof The statement and proof are identical to [BJW95, Prop. 17.16], except that
we offer a simpler proof of (f) (and could have also in [ibid.]; compare the divided
power Hopf algebra Γ(a1)).

If m is odd, say m = 2k + 1, we can write the defining equation for χam as

χam +
k∑
i=1

(χam−i ∗ ai + χai ∗ am−i) + am = 0.

By induction, the terms in the sum cancel in pairs, as m−i and i have opposite parity.
If m is even, (d) decomposes am as a ∗-product, and we again use induction.

We emphasize that (e) is not valid for i = n − 1; instead, [RW96, Prop. 2.1(i)]
shows that the unstable analogue of equation (7.19) is

(R′′
n) a∗p(n−1) = vna(0) − a(0) ◦b

◦N
(0) ◦ [vn] in P (n)∗

(
P (n)

1

)
. (10.14)

Cohomology of real projective space, for p = 2 In this case, L = RP 2N , with
cohomology (6.24). We define Hopf ring elements fi by the identity

r(t) =
2N∑
i=0

〈r, fi〉ti in P (n)∗(RP 2N) = P (n)∗[t]/(t
2N+1), for all r. (10.15)

Again, we mimic equation (10.12) by writing ai = f2i, a(i) = a2i = f2i+1 , and ci =
f2i+1. We make the obvious changes to Proposition 10.13 and write f(t) =

∑
i fit

i.
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We warn that the analogy is not perfect; ψak acquires many extra terms. Also, (d)
now requires proof; see [Bo].

Proposition 10.16 For p = 2, the Hopf ring elements fi ∈ P (n)i

(
P (n)

1

)
(for

0 ≤ i ≤ 2N) and a(i) = f2i+1 ∈ P (n)2i+1

(
P (n)

1

)
(for 0 ≤ i ≤ n − 1) defined by

equation (10.15) have the following properties:

(a) f0 = 11 and f1 = e;

(b) ψfk =
∑
i+j=k fi ⊗ fj;

(c) εfi = 0 for all i > 0, in particular, εa(i) = 0 for all i;

(d) a(i)◦a(j) = a(j)◦a(i);

(e) fi ∗ fj =
(
i+j
i

)
fi+j, provided i+ j ≤ 2N ;

(f) a(i) ∗ a(i) = 0 for 0 ≤ i < n− 1;

(g) For all r, r∗fk is the coefficient of tk in the formal identity

r∗f(t) =
2N∗
i=0
{f(t)◦i◦[〈r, fi〉]} in P (n)∗

(
P (n)

∗

)
[t]

/
(t2N+1).

Again, for i = n− 1, (f) is replaced by (10.14), now taken in P (n)∗

(
P (n)

1

)
.

Finally, we prove in [Bo] that equation (7.18) lifts in the obvious way.

Lemma 10.17 In the Hopf ring P (n)∗

(
P (n)

∗

)
for p = 2, we have

a(i)◦a(i) = b(i+1) for 0 ≤ i ≤ n− 1. (10.18)

Remark There is a case for writing e here as a(−1), so that the identity e◦e = b(0)
becomes a natural extension of (10.18).

11 Structure of the Hopf ring

In this section, we present two descriptions of the Hopf ring P (n)∗
(
P (n)

∗

)
[re-

placed by P (n)∗

(
P (n)

∗

)
if p = 2]: a clean concise description in terms of the gener-

ators and relations developed in §10, and a concrete computational description that
specifies exactly what the elements of the Hopf ring are. (This relies heavily on the
technical work of Ravenel–Wilson [RW96], and in no way replaces it.)

Theorem 11.1 (Ravenel–Wilson) The Hopf ring P (n)∗
(
P (n)

∗

)
[which is replaced

by P (n)∗

(
P (n)

∗

)
if p = 2] over P (n)∗ has the ◦-generators:

[vk] ∈ P (n)0

(
P (n)

−2(pk−1)

)
for k ≥ n, defined by equation (10.4);

e ∈ P (n)1

(
P (n)

1

)
, defined by equation (10.6);

b(j) = bpj ∈ P (n)2pj

(
P (n)

2

)
for j ≥ 0, defined by equation (10.7);

a(i) = api ∈ P (n)2pi

(
P (n)

1

)
for 0 ≤ i < n, defined by equation (10.12)

[replaced by (10.15) if p = 2];
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subject to the relations [1]∗p = 10, e◦e = −b(0), the main relations (Rk) for k > n
(see Definition 10.9), and the two variants (10.10) and (10.14) of (Rn) [also (10.18)
if p = 2].

Allowable monomials For our second description of the Hopf ring, we reinterpret
the general monomial (8.1) as the ◦-monomial

e◦ε◦a◦I ◦b◦J ◦[vK ]

= e◦ε◦a◦i0(0)
◦a◦i1(1)

◦ . . . ◦a
◦in−1

(n−1)
◦b

◦j0
(0)

◦b
◦j1
(1)

◦b
◦j2
(2)

◦ . . . ◦[vn]
◦kn ◦[vn+1]

◦kn+1 ◦ . . .
(11.2)

(We adopt the usual convention (e. g. [RW77]) that for any element d with εd = 0,
d ◦0 = [1]− 10, so that d ◦0◦d = d holds. We also set [vk]

◦0 = [v0
k] = [1].)

We define it to be allowable or Q-allowable exactly as in Definition 8.2.
A direct description of the allowable monomials is useful, to replace the indirect-

ness of Definition 8.2. As in [RW96], ∆0 denotes the multi-index (1, 0, 0, . . .).

Proposition 11.3 Any allowable ◦-monomial c in the Hopf ring can be written
uniquely in one of the standard forms

(a) c = a◦I ◦b◦G+L◦[vK ] if c does not involve e;

(b) c = e◦a◦I ◦b◦G+L−∆0 ◦[vK ] if c involves e;
(11.4)

where the multi-index G is defined by

b◦G = b
◦pn

(dn)
◦b

◦pn+1

(dn+1)
◦ . . . ◦b

◦pq−1

(dq−1), (11.5)

L = (l0, l1, l2, . . .), and the indices satisfy

(i) q ≥ n;

(ii) 0 ≤ dn ≤ dn+1 ≤ . . . ≤ dq−1;

(iii) 0 ≤ lt < pr for all t < dr, for n ≤ r < q;

(iv) 0 ≤ lt < pq for all t;

(v) kr = 0 (i. e. vK contains no factor vr) for all r < q;

(vi) In Case (b), dn = 0 or l0 > 0.

(11.6)

Conversely, any such monomial is allowable.

Proof If the allowable monomial c does not involve e, we choose each dr in turn as
small as possible, so that (iii) holds; moreover, (iii) requires this choice of dr. (If we
cannot even start, q = n, c = a◦I ◦b◦L◦[vK ], and (ii), (iii) and (v) become vacuous.)
We continue as long as possible, until (iv) holds. In view of (8.3)(i), c does not contain
[vr] for any r < q, and (v) holds.

If c has the form e◦c′, we note that e◦c = b(0)◦c
′ remains allowable, and apply case

(a) to it. Here, we need (vi) so that ∆0 can be subtracted off.
Conversely, the monomials (11.4) are easily seen to be allowable.

The algebra structure We recall that a simple system of generators of a graded
algebra A with multiplication ∗ over a graded ring R of characteristic p is a set of
elements z1, z2, z3, . . . such that the finite products

z∗M = z∗m1
1 ∗ z∗m2

2 ∗ z∗m3
3 ∗ . . . , (11.7)
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where 0 ≤ mr < p for each zr of even degree and mr = 0 or 1 for each zr of odd
degree, form a set of free R-module generators of A.

The following description is also essentially included in [RW96, Thms. 1.3, 1.4]
[except that for p = 2, (d) was not written out explicitly and contains the surprise
(iii)]. For I 6= (1, 1, . . . , 1), ρ(I) denotes the smallest t such that in−t = 0.

Theorem 11.8 (Ravenel–Wilson) Assume 0 < n < ∞, and let k be any integer.
Then

(a) The Hopf algebra P (n)∗
(
P (n)

k

)
[or P (n)∗

(
P (n)

k

)
if p = 2] has as a simple

system of ∗-generators the set of all allowable ◦-monomials (11.2) (that lie in it);

(b) The Q-allowable ◦-monomials form a minimal set of algebra ∗-generators of

P (n)∗
(
P (n)

∗

)
[or P (n)∗

(
P (n)

∗

)
if p = 2];

(c) For p odd, P (n)∗
(
P (n)

k

)
is the tensor product of the following subalgebras,

one for each Q-allowable ◦-monomial (that lies in it):

(i) TPρ(I)(a
◦I ◦b◦J ◦[vK ]) for I 6= (1, 1, . . . , 1);

(ii) P (a◦I ◦b◦J ◦[vK ]) for I = (1, 1, . . . , 1);

(iii) E(e◦a◦I ◦b◦J ◦[vK ]);

(d) For p = 2, P (n)∗

(
P (n)

k

)
contains the following subalgebras, one for each Q-

allowable ◦-monomial (that lies in it), and is additively (but not multiplicatively)
isomorphic to their tensor product:

(i) TPρ(I)(e
◦ε◦a◦I ◦b◦J ◦[vK ]) for I 6= (1, 1, . . . , 1);

(ii) P (a◦I ◦b◦J ◦[vK ]) for I = (1, 1, . . . , 1);

(iii) TPn+1(e◦a
◦I ◦b◦J ◦[vK ]) for I = (1, 1, . . . , 1).

Remark For p = 2, the quotient algebra

H∗
(
P (n)

k
; F2

)
∼= F2 ⊗P (n)∗ P (n)∗

(
P (n)

k

)
is the tensor product of the subalgebras listed in (d), interpreted as F2-algebras.

To complete this description, we need the structure maps ∗, ◦, ψ, ε, and χ, which
are all (bi)linear. We know ψ, ε, and χ on each generator e, a(i), b(j) and [vk]; then
the Hopf ring laws determine these operations in general.

Reduction to standard form We reprove part of Theorem 11.1 by showing that
we have enough relations to reduce any Hopf ring expression to a P (n)∗-linear com-
bination of ∗-products (11.7) of allowable ◦-monomials.

For ◦, we need to know how to ◦-multiply any two ◦-monomials (11.2); then the
distributive laws for (a∗b)◦c and a◦(b∗c) [modified if p = 2] take care of general
∗-monomials z∗M as in (11.7). As the ◦-generators ◦-commute up to sign [even for
p = 2], all we need is a reduction formula for each non-allowable ◦-monomial (11.2).

The relation e◦e = −b(0) takes care of e◦2. If p is odd, a◦2(i) = 0 is automatic, by

Proposition 10.13(i). [If p = 2, we use a◦2(i) = b(i+1) instead, from equation (10.18).]
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For the disallowed monomials (i) and (ii) of (8.3), we use the same relations as
in Lemma 8.5, now working modulo ∗-decomposables as well. These use only the
relations (Rk) for k > n and (10.10), which implies (Rn).

For the ∗-product of two ∗-monomials (11.7), we shuffle the ◦-monomials into
the desired order (with the appropriate sign), and deal with excess ∗-powers of any
◦-monomial. [If p = 2, shuffling introduces extra terms, but the process quickly
terminates, because the ∗-commutator c ∗ d − d ∗ c of any two ◦-monomials is ∗-
central; see [Bo] for details.]

The Frobenius operator To finish the reduction to standard form, we need a
formula for the Frobenius operator Fc = c∗p = c ∗ c ∗ . . . ∗ c on each allowable
◦-monomial c of even degree [or any degree if p = 2].

We start from the relation [1]∗p = 10, which we rewrite as F ([1] − 10) = 0. We
next reverse the identity [BJW95, (15.13)] as

F (c◦b◦J) = (Fc)◦b◦0,J , (11.9)

where 0, J denotes the extended multi-index (0, j0, j1, j2, . . .). The proof used only
the property ψbk =

∑
i+j=k bi ⊗ bj. Since ak has the same property when p is odd,

according to Proposition 10.13(b), we similarly have

F (a◦I,0◦c) = a◦0,I ◦Fc

for any multi-index I = (i0, i1, i2, . . . , in−2). [For p = 2, Proposition 10.16 delivers the
same result, and also

F (e◦c) = a(0)◦Fc.]

For a(n−1), we rewrite the relation (10.14) as

Fa(n−1) = vna(0) − a(0) ◦b
◦N
(0) ◦ [vn].

Since applying −◦[vK ] preserves ∗-multiplication, we immediately have

F (c◦[vK ]) = (Fc)◦[vK ].

Combining these, we find the general formulae

F (a◦I,0◦b◦J ◦[vK ]) = 0 (11.10)

and (with attention to the shuffles needed and the resulting signs)

F (a◦I,1◦b◦J ◦[vK ]) = (−1)|I|+1a◦1,I ◦b◦N,J ◦ [vnv
K ] + (−1)|I|vna

◦1,I ◦b◦0,J ◦ [vK ], (11.11)

where |I| = ∑
r ir.

[If p = 2, we need also the formulae involving e, which are

F (e◦a◦I,0◦b◦J ◦[vK ]) = 0 (11.12)

and

F (e◦a◦I,1◦b◦J ◦[vK ]) = a◦0,I ◦b(1) ◦b
◦N,J ◦ [vnv

K ] + vna
◦0,I ◦b(1) ◦b

◦0,J ◦ [vK ], (11.13)

in which we make use of a(0)◦a(0) = b(1). For example,

F (e ◦a(n−1) ◦b
◦N
(0)) = b◦N+2n+1

(0)
◦[vn+1] + vnb

◦2n

(1) + v2
nb

◦N
(0) ◦b(1) + vn+1b

◦2n

(0)

after reduction to standard form, which recovers equation (7.21).]
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A reduction formula There is a difficulty with equation (11.11) which obscures
the algebraic structure of the Hopf ring. Even in the simple case

F (a(n−1)◦b
◦G) = −a(0)◦b

◦N,G◦[vn] + vna(0)◦b
◦0,G,

with G as in equation (11.5), the first term on the right is visibly not allowable (unless
q = n, so that G = 0). What we need is a reduction formula for

b◦0,G◦[vn] = b
◦pn

(dn+1)
◦b

◦pn+1

(dn+1+1)
◦ . . . ◦b

◦pq−1

(dq−1+1)
◦[vn],

which is essentially Lemma 3.8 of [RW96]. It involves the p-th ◦-power of b◦G,

(b◦G) ◦p = b◦pG = b
◦pn+1

(dn)
◦b

◦pn+2

(dn+1)
◦ . . . ◦b

◦pq

(dq−1).

Lemma 11.14 Using only the main relations (Rk), the ◦-monomial b◦0,G◦[vn], with
G as in equation (11.5), reduces to an allowable monomial by a formula of the form

b◦0,G◦[vn] ≡ (−1)q−nb◦pG◦[vq] + . . . ,

where the omitted terms do not involve any a(i) and either (i) have the form
b◦J ◦[vk] with b◦J lexicographically higher than b◦pG (see §8), (ii) lie in the ideal
V = (vn, vn+1, . . .), (iii) have [v]-length at least 2, or (iv) are ∗-decomposable.

We apply this to equation (11.11) [also (11.13) if p = 2].

Corollary 11.15 For the general allowable ◦-monomial (11.4)(a) without e, we
have

F (a◦I,1◦b◦G+L◦[vK ]) ≡ (−1)q−n+|I|+1a◦1,I ◦{b◦N,L◦b◦pG◦[vqv
K ] + . . .}. (11.16)

[If p = 2, we similarly obtain

F (e◦a◦I,1◦b◦G+L−∆0 ◦[vK ]) ≡ a◦0,I ◦{b◦N,L◦b◦2G◦[vqv
K ] + . . .} (11.17)

from (11.4)(b).]

The leading term on the right in equation (11.16) is always allowable: written in
standard form (11.4), it is a◦1,I ◦b◦G+L′ ◦[vK

′
], with the same G, vK

′
= vqv

K , and b◦L
′
=

b◦N,L◦b◦(p−1)G. Careful bookkeeping shows that, as the indices vary, it runs through
all the Q-disallowed ◦-monomials of type (8.3)(iii) that are nevertheless allowable,
once each. [Similarly, (11.17) accounts for types (iv) and (v).]

It follows that F never kills anything unexpected. Now we can read off parts (c)
and (d) of Theorem 11.8.

Proof of Lemma For n ≤ r ≤ q, we set cr = b
◦pn+1

(dn)
◦b

◦pn+2

(dn+1)
◦ . . . ◦b

◦pr

(dr−1), so that

(conventionally) cn = b◦0 and cq = b◦pG.
We show first that cr ◦[vs] ≡ 0 whenever n ≤ s < r ≤ q, by induction on s.

We ◦-multiply (Rds+s) by cs; by (7.14), the k-th term is cs◦b
◦pk

(ds+s−k)◦[vk]. If k < s,
this term is neglected by induction. (If s = n, there are no such terms.) If k > s,
we have ds + s − k < ds, and this term is lexicographically higher. If k = s, we

have cs◦b
◦ps

(ds)
◦[vs], which gives cs+1◦[vs] ≡ 0 when we ◦-multiply by b

◦ps+1−ps

(ds)
; hence

cr ◦[vs] ≡ 0 for any r > s, if we ◦-multiply by further factors.
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Then we show that cs◦b
◦ps

(ds+1)
◦[vs] ≡ −cs+1◦[vs+1] for n ≤ s < q, from which the

result follows by induction, starting from cn = b◦0. We ◦-multiply (Rds+s+1) by cs.

The k-th term is cs◦b
◦pk

(ds+s+1−k)◦[vk], which we have just shown is negligible if k < s.
If k > s + 1, we have ds + s + 1 − k < ds, and the term is lexicographically higher.
The two remaining terms, with k = s and k = s+ 1, are the desired terms.

12 Effect on homotopy groups

Given an unstable operation r:P (n)k(−) → P (n)m(−), where k,m > 0, consider
the homomorphism of homotopy groups r∗: Σ

kP (n)∗ → ΣmP (n)∗ (see diagram (3.9))
induced by the representing map r:P (n)

k
→ P (n)

m
. By [BJW95, Lemma 13.9], it is

given on Σkv, where v ∈ P (n)i, by the unstable analogue of equation (7.6), namely

r∗Σ
kv = Σm〈r, ek+i◦[v]〉, (12.1)

where e2j = b
◦j
(0) and e2j+1 = e◦b

◦j
(0).

We therefore seek more information on the relations in the Hopf ring.

The first higher-order relation We need the Hopf ring version for P (n) of Ben-
dersky’s Lemma [Be86, Thm. 6.2], which immediately implies Lemma 8.12.

Lemma 12.2 For q ≥ n, we have in P (n)∗
(
P (n)

g(n,q−1)+1

)
the reduction formula

eg(n,q)−1◦[vq] ≡ vqeg(n,q−1)+1 mod IqP (n)∗
(
P (n)

g(n,q−1)+1

)
. (12.3)

[If p = 2, this is almost superseded by

eg(n,q)−2◦[vq] ≡ vqeg(n,q−1) + F (eg(n,q−1)−1◦a(n−1)) mod Iq, for q ≥ n+ 1.] (12.4)

Proof We establish (12.3) by induction on q. For q = n, it follows immediately
from (10.10). For q > n, we return to the definition of the relation (Rq). We
expand [p](x) =

∑
K λ(K)vKxd(K), summing over multi-indices K, with coefficients

λ(K) ∈ Fp and exponents d(K); then if we write b(x) = 12 + b(x), (10.8) becomes

12 + b
( ∑

K

λ(K)vKxd(K)
)

=∗
K

{
12 + b(x)◦d(K)◦[vK ]

}∗λ(K)

. (12.5)

We apply the suspension eh◦−, where h = g(n, q−1)− 1, which kills 12 and most
∗-products and thus drastically simplifies (12.5) to

eh◦b
( ∑

K

λ(K)vKxd(K)
)

=
∑
K

λ(K)eh◦b(x)
◦d(K)◦[vK ].

We take the coefficients of xp
q

and work mod Iq. On the left, by (6.18), the only
surviving term in [p](x) is vqx

pq
, giving eh◦vqb(0), the right side of (12.3). On the right,

eh◦[vk] ≡ 0 for all k < q, by induction on q, since h = g(n, q−1) − 1 ≥ g(n, k) − 1.
This leaves only eh◦b

◦pq

(0)
◦[vq], as required.

[For (12.4), we take h = g(n, q−1) − 2 instead. We still have enough e’s to kill
[vk] for any k < q − 1, but not [vq−1]. By (6.16), the only terms of interest in [2](x)
are vq−1x

2q−1
and vqx

2q
. Instead of (12.3), we find

eh◦vqb(0) ≡ eh◦b
◦2q−1

(1) ◦[vq−1] + eh◦b
◦2q

(0) ◦[vq].
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The first and third terms appear as the second and first terms in (12.4).
The second term is not allowable; but if q = n+ 1, we use (11.13) to write it as

b◦N(0) ◦b
◦2n

(1) ◦[vn] ≡ F (e◦a(n−1)◦b
◦N
(0)).

If q > n+ 1, we have eh◦[vq−1] ≡ F (eg(n,q−2)−1◦a(n−1)) by induction. Then

eh◦b
◦2q−1

(1) ◦[vq−1] ≡ b◦2
q−1

(1) ◦F (eg(n,q−2)−1◦a(n−1)) = F (b◦2
q−1

(0) ◦eq(n,q−2)−1◦a(n−1)),

as required, with the help of equation (11.9).]

Proofs for §3 Now we can finish the proofs of two lemmas.

Proof of Lemma 3.8 For (a), by (12.1),

r∗Σ
k(vnv) = Σm〈r, ek+q+2N ◦[vnv]〉 = Σm〈r, ek+q+2N ◦[vn]◦[v]〉.

Since k + q > 0, we can use (10.10) to rewrite this as

r∗Σ
k(vnv) = Σm〈r, vnek+q ◦[v]〉 = vnr∗Σ

kv.

Part (b) is similar, with (12.3) in place of (10.10).

Lemma 12.6 Let r:P (n)
k
→ P (n)

k
be any map, where k > g(n,m−1), and suppose

that on homotopy, r∗: Σ
kP (n)∗ → ΣkP (n)∗ is given on the bottom class by r∗Σ

k1 =
λΣk1, where λ ∈ Fp. Then on any monomial vK in the elements vn, vn+1, . . . , vm, r∗
has the form

r∗Σ
kvK = λΣkvK +

∑
L>K

cLΣkvL (12.7)

with coefficients cL ∈ Fp, where we order the multi-indices L = (ln, ln+1, . . .) lexico-
graphically (as in §8).

Proof We use induction on the length of vK , starting from K = 0. If (12.7) holds
for ΣkvK , Lemma 3.8(b) gives

r∗Σ
k(vqv

K) ≡ λΣk(vqv
K) +

∑
L>K

cLΣk(vqv
L) mod Iq.

If we assume (as we may) that vK contains no factors vt with t < q, all monomials in
Iq will be larger lexicographically than vqv

K , and we have the result for vqv
K .

Proof of Lemma 3.6 Take any map f :P (n,m)
k
→ P (n,m)

k
, where g(n,m−1) <

k ≤ g(n,m). Suppose f∗Σ
k1 = λΣk1. We apply Lemma 12.6 to the composite

P (n)
k

ρ(m)−−−−→ P (n,m)
k

f−−→ P (n,m)
k

θ(m)−−−−→ P (n)
k

to deduce that
θ(m)∗f∗Σ

kvK = λΣkvK +
∑
L>K

cLΣkvL

for any monomial vK in the generators vn, vn+1, . . . , vm. We apply ρ(m)∗, to see that
f∗Σ

kvK has the same form (possibly with some terms vL deleted). It is now clear
that if λ 6= 0, f∗ is an isomorphism and f is a homotopy equivalence.
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