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k(n)-Torsion-Free H-Spaces and
P(n)-Cohomology

J. Michael Boardman and W. Stephen Wilson

Abstract. The H-space that represents Brown–Peterson cohomology BPk( – ) was split by the second

author into indecomposable factors, which all have torsion-free homotopy and homology. Here, we do

the same for the related spectrum P(n), by constructing idempotent operations in P(n)-cohomology

P(n)k( – ) in the style of Boardman–Johnson–Wilson; this relies heavily on the Ravenel–Wilson deter-

mination of the relevant Hopf ring. The resulting (i − 1)-connected H-spaces Yi have free connective

Morava K-homology k(n)∗(Yi), and may be built from the spaces in the Ω-spectrum for k(n) using

only vn-torsion invariants.

We also extend Quillen’s theorem on complex cobordism to show that for any space X, the

P(n)∗-module P(n)∗(X) is generated by elements of P(n)i(X) for i ≥ 0. This result is essential for the

work of Ravenel–Wilson–Yagita, which in many cases allows one to compute BP-cohomology from

Morava K-theory.

Introduction

We exploit the close relationship between the connective Morava K-theory spectrum

k(n), whose coefficient ring is k(n)∗ = Fp[vn], and the spectrum P(n) with P(n)∗ =

Fp[vn, vn+1, vn+2, . . . ], where Fp denotes the field with p elements. These ring spectra

are defined for each prime p (suppressed from almost all the notation) and integer

n ≥ 0. Most of our work generalizes the case n = 0 (see [Wi75]), where k(0) =

H(Z(p)), the Eilenberg–Mac Lane spectrum for Z(p) (the integers localized at p), and

P(0) = BP, the Brown–Peterson spectrum, with BP∗ = Z(p)[v1, v2, v3, . . . ].

In Section 1 we present three groups of results. First, we give a structure theorem

for a class of H-spaces that may be defined entirely in terms of k(n). Second, starting

from P(n), we construct examples of such H-spaces, which we use to prove our struc-

ture theorem. Third, there are consequences for the structure of P(n)-(co)homology:

we find (i) a Quillen-type result, that P(n)∗(X) is generated as a module by elements

of P(n)i(X) for i ≥ 0, (ii) a Landweber-type filtration theorem, and (iii) a bound on

the homological dimension of P(n)-homology.

All these results depend on the Ravenel–Wilson calculation [RW96] of the Hopf

ring for P(n), which encodes the unstable operations in P(n)-cohomology. All the

machinery of [Bo95,BJW95] becomes available, making P(n)∗(–) our sixth example

of a cohomology theory whose operations we can handle in a uniform manner.
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Notation

We fix throughout a prime p and an integer n > 0. Because it occurs so frequently, we

find it convenient to write N = pn − 1.

[[For completeness, we include the results for p = 2. Modifications are required

because (i) our ring spectra are no longer commutative, and (ii) one of our test

spaces, real projective space, has different cohomology. Shorter comments, like this

one, are enclosed within square brackets. Longer comments form a subsection. A

few proofs are substantial enough to be deferred to a forthcoming paper [Bo].]]

All spaces are assumed to be homotopy-equivalent to CW-complexes. Identity

maps and homomorphisms are denoted by id.

We use much notation and terminology from [BJW95]. A ring spectrum E defines

a homology theory E∗(–) and a cohomology theory E∗(–), both multiplicative with

coefficient ring E∗ = πS
∗(E). Then Ei(–) is represented (on the homotopy category

Ho of unbased spaces) by the i-th space E i of the Ω-spectrum for E.

Because we deal mainly with homology and homotopy groups rather than coho-

mology, we use homology degrees throughout (unlike [BJW95]), assigning the degree

i to elements of Ei(X) and πi(X). This forces elements of Ei(X) to have degree −i.

We thus write E∗ for the coefficient ring, even when working with cohomology; in

particular, Ei(point) = E−i . So the Hazewinkel generator vi has degree 2(pi − 1).

The algebraic suspension ΣM of a graded group M is a copy of M with all degrees

raised by one: an element x ∈ Mi gives rise to Σx ∈ (ΣM)i+1.

As in [RW96], E(x, . . . ) denotes the exterior algebra on generator(s) x, . . . and

P(x, . . . ) the polynomial algebra. TPh(x) denotes the truncated polynomial algebra

P(x)/(xph

).

1 The Main Results

1.1 Splittings of H-spaces

We regard the standard generator uk of P(n)∗(Sk) as a map uk : Sk → P(n)
k
. We

consider spaces X that satisfy the following axioms.

Axioms 1.1

(A) X is a connected H-space of finite type (meaning that each homotopy group

πi(X) is finitely generated);

(B) k(n)∗(X) is a free k(n)∗-module (equivalently, has no vn-torsion);

(C) For any k > 0, any map Sk → X factors through the map uk to give a map

P(n)
k
→ X.

Our first theorem classifies these spaces.

Theorem 1.2 Given n > 0, the spaces X that satisfy Axioms 1.1 have the following

properties.

(i) For each k > 0, there is (up to homotopy) a unique (k − 1)-connected (but not

k-connected) example Yk that does not decompose as a product of spaces.
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(ii) Every X is homotopy equivalent to some product Y =
∏

i Yki
, where the number

of copies of each Yk is finite and is uniquely determined by X.

(iii) Every retract of X is another example.

(iv) Every product of examples is an example, provided it has finite type.

(v) The loop space ΩX is another example, provided X is simply connected.

Shortly, in Definition 1.5, we shall reveal the spaces Yk explicitly.

Remark The above decompositions and equivalences are not as H-spaces. Never-

theless, no information is lost, because in (ii) for example, the given multiplication

on X corresponds to some multiplication on Y ; as we (shall) have complete informa-

tion on the possible maps Y × Y → Y , we can in principle detect which of them are

H-space multiplications.

Part (iii) is clear. So is (iv), with the help of the Künneth formula for k(n)-hom-

ology (as in [Bo95, Theorem 4.2]). Part (v) will follow immediately from (ii) and

Theorem 1.7. We prove (i) and (ii) in Section 3.

1.2 Towers Built from k(n)

Although Axiom 1.1(C) is technically convenient, it lacks intuitive content. Here,

we replace it by a more appealing axiom. This makes Theorem 1.2 analogous to the

results of [Wi75], as we discuss later in this section.

We consider spaces that are built from the spaces k(n)
i

in a particularly nice way,

using only vn-torsion invariants. We recall that k(n)∗ = Fp[vn], where vn has degree

2N = 2(pn − 1).

Definition 1.3 Given a space Y , we call a map z : Y → k(n)
q+1

a vn-torsion map if,

considered as an element of k(n)∗(Y ), it satisfies v c
n z = 0 for some c. (We assume

q ≥ 0. Indeed, z must be zero unless q ≥ 2N + 1 = 2pn − 1.)

We call a space X a k(n)-tower with vn-free homotopy if it is the homotopy limit of

a sequence of spaces and maps

(1.1) · · · → X3 → X2 → X1 → X0 = point

in which each map Xi → Xi−1 (for i > 0) is the homotopy fibre of some vn-torsion

map zi : Xi−1 → k(n)
q(i)+1

. (We allow the possibility of a finite tower, X = Xm for

some m, or even a tower having only one stage, X = X1 = k(n)
q(1)

, as well as the

degenerate case where X is contractible.)

A vn-torsion map z : Y → k(n)
q+1

necessarily induces the zero homomorphism

on homotopy. Then for each i > 0 (assuming X is connected, so that q(i) ≥ 1), the

homotopy long exact sequence of zi reduces to the short exact sequence of groups

(1.2) 0 → Σ
q(i)

Fp[vn] → π∗(Xi) → π∗(Xi−1) → 0.

Thus π∗(X) is an iterated extension of suspensions of Fp[vn]. (Our terminology is

abusive to the extent that we do not have a natural action of vn on π∗(Xi) for i > 1.)
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We study such towers in more detail in Section 4 and prove the following equiva-

lence.

Theorem 1.4 If we replace Axiom 1.1(C) by the axiom

(C ′) X is a k(n)-tower with vn-free homotopy,

we obtain the same class of H-spaces. Thus Theorem 1.2 remains valid.

1.3 Examples Based on P(n)

The prime ideal In = (p, v1, v2, . . . , vn−1) ⊂ BP∗ = Z(p)[v1, v2, v3, . . . ] is invariant

and therefore of particular interest. (We set v0 = p, and take I1 = (p) and I0 = (0).)

The spectrum P(n) is constructed (see Section 2) to have the quotient ring

P(n)∗ = BP∗ /In = Fp[vn, vn+1, vn+2, . . . ]

as its homotopy. In particular, P(0) = BP, and P(1) is just BP mod p.

Further, given m ≥ n, we kill off the ideal

(1.3) Jm = (vm+1, vm+2, vm+3, . . . ) ⊂ P(n)∗

to produce the spectrum we call P(n,m) (but known as BP[n,m + 1) to Yosimura

[Yo76], and as BP(p, v1, . . . , vn−1, vm+1, . . . ) to Yagita [Ya76]), with homotopy

P(n,m)∗ = P(n)∗/ Jm = Fp[vn, vn+1, . . . , vm].

It comes equipped with a canonical map ρ(m) : P(n) → P(n,m). These spectra are

intimately connected with the spectra E(n,m) = v−1
m P(n,m), which are essential in

Ravenel–Wilson–Yagita [RWY98]. We recognize P(n, n) as k(n).

Remark Unlike In, the ideal Jm is not at all canonical, as it depends on the choice of

the generators vi of P(n)∗. Nevertheless, our results are independent of this choice,

as we are concerned only with the additive structure of P(n,m).

The behavior of these spectra depends on the numerical function

(1.4) g(n,m) = 2(pn + pn+1 + · · · + pm),

where it is reasonable to define g(n, n − 1) = 0.

Definition 1.5 Given k > 0, we define the H-space Yk = P(n,m)
k
, where the

integer m is defined in terms of (1.4) by

(1.5) g(n,m − 1) < k ≤ g(n,m).

For convenience, we also define Y0 = Fp, viewed as a discrete group.
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These are the spaces Yk that appear in Theorem 1.2. In particular, Yk = k(n)
k

for 0 < k ≤ 2pn. As the spaces P(n)
k

satisfy Axioms 1.1, they must decompose

according to Theorem 1.2(ii). We establish the following splittings in Section 3.

Theorem 1.6 Assume k ≥ 0. If k > 0, define m by (1.5); if k = 0, take m = n − 1.

Then we have homotopy decompositions

(1.6) P(n)
k
≃ Yk ×

∏

j>m

Yk+2(p j−1)

and, for any h > m,

(1.7) P(n, h)
k
≃ Yk ×

h∏

j=m+1

Yk+2(p j−1).

These are equivalences of H-spaces [[except in the extreme case when p = 2 and k =

g(n,m)]].

We showed in [BW01, Theorem 1.1] that such splittings exist, though without

making them explicit as we do here in Section 3. They are patterned after the split-

tings of the spaces BP k in [Wi75], which were recovered explicitly in [BJW95] and

are reviewed below.

We note that (1.7) reduces to Definition 1.5 when h = m.

Remark No such result holds for P(n,m)
k

when k > g(n,m), as Axiom 1.1(B)

definitely fails (otherwise this space would contradict Theorem 1.2(ii)).

We use (1.7) to decompose ΩYk = P(n,m)
k−1

explicitly.

Theorem 1.7 The loop space ΩYk is given for all k > 0 as follows:

(i) If k does not have the form g(n, q) + 1 for any q, then ΩYk ≃ Yk−1.

(ii) If k = g(n, q) + 1, where q ≥ n − 1, then ΩYk ≃ Yk−1 × Yk−1+2(pq+1−1).

Since Ω is a right adjoint functor and so preserves products, this gives part (v) of

Theorem 1.2. We leave it as an exercise to decompose the negative spaces P(n)
−k

for

k > 0, by writing them as Ω
k+1P(n)

1
, and similarly for P(n,m)

−k
.

1.4 Some History

For n = 0, the results differ slightly. Recall that k(0) = H(Z(p)), P(0) = BP, and

(see [Wi75]) P(0,m) = BP〈m〉 has BP〈m〉∗ = Z(p)[v1, v2, . . . , vm]. Axioms 1.1 (with

(C) replaced by (C ′) as in Theorem 1.4) then yield connected H-spaces X whose

homotopy groups πk(X) and homology groups Hk(X) are all free Z(p)-modules of fi-

nite rank. The Postnikov k-invariants of such spaces are necessarily torsion elements.

Theorem 1.2 remains valid exactly as stated, with m still defined by (1.5). However,

Theorem 1.6 gives H-space equivalences only for g(0,m − 1) < k < g(0,m); for
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k = g(0,m), we have merely a homotopy equivalence. (Of course, Y0 = Z(p) rather

than Fp.) These are the main results of [Wi75] or [BJW95, Theorem 1.16], and form

the motivation for this work.

1.5 The Structure of P(n)-Cohomology

We extend Quillen’s theorem on complex cobordism to P(n).

Theorem 1.8 For any space X, the cohomology P(n)∗(X) is generated as a P(n)∗-

module (topologically if X is infinite) by elements of P(n)i(X) for i > 0 together with

one element of P(n)0(X) for each component of X.

This result is essential for the calculations in Ravenel–Wilson–Yagita [RWY98].

One version was stated [Ya84, Theorem 1.11] without proof (although the approach

suggested is now known not to work). In Section 8, our machinery of additive unsta-

ble operations provides a very short direct proof in terms of an explicit formula.

We also refine Landweber’s filtration theorem. Yosimura [Yo76, Theorem 3.4] and

Yagita [Ya76] both observed that Landweber’s theorem generalizes to stable P(n)-co-

homology comodules M. The only finitely generated invariant prime ideals in P(n)∗
are Im = (vn, vn+1, . . . , vm−1) for n ≤ m < ∞ (where In is interpreted as (0)). We

find in Section 8 that an unstable comodule structure on M (in the sense of [BJW95,

Definition 6.32]) restricts the possible Landweber factors as follows.

Lemma 1.9 Let M be a P(n)∗-module with a single generator x ∈ Mk (in homology

degree −k) and annihilator ideal Ann(x) = Im, where n ≤ m <∞, so that

M ∼= Σ
−kP(m)∗ ∼= Σ

kP(m)∗ ∼= Σ
k(P(n)∗/Im).

Then M admits an unstable P(n)-cohomology comodule structure if and only if k satisfies

the appropriate condition (depending on m and p):

(i) k ≥ 0 if m = n;

(ii) k ≥ g(n, n) − 1 if m = n + 1;

(iii) k ≥ g(n,m − 1) − 1 if m ≥ n + 2 and p is odd;

(iv) k ≥ g(n,m − 1) − 2 if m ≥ n + 2 and p = 2;

and this comodule structure is unique.

This leads directly to the filtration theorem.

Theorem 1.10 Let M be an unstable P(n)-cohomology comodule of finite type (each

Mi a finitely generated Fp-module) and bounded above (Mi
= 0 for all i > i0). Then

M admits a finite filtration by subcomodules 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mh = M in

which each quotient Mi/Mi−1 is a monogenic comodule Σ
−ki P(mi)∗ with generator xi ,

as listed in Lemma 1.9. In particular, M is a finitely presented P(n)∗-module.

If, in addition, M is a P(n)∗-algebra of any of the forms:

(i) M = P(n)∗(X), for a finite complex X;
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(ii) M = Im[ f ∗ : P(n)∗(Y ) → P(n)∗(X)], for a map of spaces f : X → Y , where X is

a finite complex;

(iii) A spacelike (see [BJW95, Definition 7.14]) unstable P(n)∗-cohomology algebra;

then we may take each Mi to be an invariant ideal in M. At the last stage, we may take

xh = 1 and mh = n.

Our proof in Section 8 quotes the method of proof in [BJW95, Theorem 20.11].

However, here we prove that M is finitely presented, instead of assuming it. (Of

course, it has long been known that for finite X, P(n)∗(X) is a coherent P(n)∗-module

and hence finitely presented.) In [BJW95, Theorem 20.11], we overlooked the fact

that this modification applies equally well to BP = P(0), as follows. (Again, (i) is not

new. However, (ii) is non-trivial and new when BP∗(Y ) has phantom classes.)

Theorem 1.11 Let M be an unstable BP-cohomology comodule of finite type (each Mi

a finitely generated Z(p)-module) and bounded above, for example:

(i) M = BP∗(X), for a finite complex X;

(ii) M = Im[ f ∗ : BP∗(Y ) → BP∗(X)], for a map of spaces f : X → Y , where X is a

finite complex.

Then M is a finitely presented BP∗-module.

1.6 Homological Dimension

Our starting point is the Conner–Floyd theorem [CF66, Theorem 10.1] that the map

of ring spectra from the unitary Thom spectrum MU to the K-theory spectrum K

determined by the Todd genus induces for finite X an isomorphism of cohomology

theories

K∗ ⊗MU∗
MU ∗(X)

∼=
−→ K∗(X).

A far-reaching analogue is the result

(1.8) E(n,m)∗ ⊗P(n)∗ P(n)∗(X) ∼= E(n,m)∗(X),

where E(n,m) = v−1
m P(n,m). A key ingredient of such results is knowledge of the

homological dimension of various (co)homology modules.

The case m = n of (1.8) is due to Morava [Mo85] as part of his structure the-

orem, and is quoted and reproved in [JW75], as well as by Yagita [Ya76]. The case

n = 0, along with results on the homological dimension of BP∗(X), was proved

by Johnson–Wilson [JW73, Remark 5.13] by means of the splitting theorem for BP

in [Wi75]. Shortly afterwards, Landweber [La76] reproved this case by using co-

homology operations instead of the splitting, establishing his exact functor theorem

in the process; however, he was unable to recover Corollary 4.4 of [JW73], which

gave an upper bound on the homological dimension of BP∗(X). Later, Morava and

Yagita [Ya77, Theorem 3.11] showed that P(n)∗(X) is a BP∗(BP)-module. Yagita and

Yosimura [Yo76] both used this fact to generalize the exact functor theorem to P(n),

which fully includes (1.8), and obtain homological dimension results for P(n)∗(X).
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We have now gone full circle, and with our splitting for P(n) in hand, can use the

techniques of [JW73] to recover these results as well as (1.8) with the added benefit

of the following estimate, which we establish in Section 5.

Theorem 1.12 Assume that X is a finite complex of dimension less than g(n,m)/2.

Then the homological dimension of the P(n)∗-module P(n)∗(X) is at most m − n.

Although the exact functor theorem does not apply, ρ(m) : P(n) → P(n,m) still

induces a natural homomorphism of P(n,m)∗-modules

ρ(m) : P(n,m)∗ ⊗P(n)∗ P(n)∗(X) → P(n,m)∗(X).

This is an isomorphism when X is a point, but not in general, as the left side is not

a cohomology theory. Classically, as in [JW73], one then asks for which X it is an

isomorphism. Instead, we show in Section 5 that it is always an isomorphism in a

certain range of degrees [[with no modification if p = 2]]. Explicitly, its components

are

(1.9) ρ(m) : P(n)h(X)
/ ∑

j>m

v jP(n)h+2(p j−1)(X) → P(n,m)h(X).

Theorem 1.13 Assume that X is finite-dimensional and that m ≥ n > 0. Then (1.9)

is an isomorphism for all h ≤ g(n,m), and therefore a P(n,m)∗-module isomorphism

in this range.

In particular, for m = n we have the isomorphism

ρ(n) : P(n)h(X)
/ ∑

j>n

v jP(n)h+2(p j−1)(X) ∼= k(n)h(X)

for all h ≤ 2pn, which preserves the vn-action in this range.

2 The Ring Spectrum P(n)

As the literature is somewhat conflicting [[especially when p = 2]], we review the

construction of P(n) in fair detail. In this section, we work entirely in the graded

stable homotopy category Stab∗.

The spectrum P(n), so named by Johnson–Wilson [JW75], was based on work of

Morava. It may conveniently be constructed directly from the Thom spectrum MU

by applying Sullivan–Baas theory [Ba73] to kill off the unwanted generators of MU∗,

as well as p (with no need for localization). (As stable P(n)-cohomology operations

act faithfully on P(n)-homology, no information is lost by working in homology.)

It is automatically a BP-module spectrum, with an action map λ : BP∧P(n) →
P(n) that satisfies the usual two module axioms, and the canonical map BP → P(n)

is BP-linear. It comes equipped with an exterior algebra E(Q0,Q1, . . . ,Qn−1) of BP-

linear operations, where Qi has homology degree −(2pi −1); we write the monomial

basis elements as QI
= Qi0

0 ◦Qi1

1 ◦· · ·◦Q
in−1

n−1 for each multi-index I = (i0, i1, . . . , in−1),

where each ir is 0 or 1.
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2.1 The Multiplication

The canonical map η : S0 → BP → P(n) serves as the unit map of P(n), where S0

denotes the sphere spectrum, but there is no obvious multiplication on P(n). It is

known that for p 6= 2, there is a unique multiplication φ : P(n) ∧ P(n) → P(n)

having the following properties:

Axioms 2.1

(A) φ is BP-bilinear;

(B) BP → P(n) is multiplicative;

(C) φ has η : S0 → P(n) as two-sided unit;

(D) φ is commutative;

(E) φ is associative;

(F) each Qi : P(n) → P(n) is a derivation, in the sense that

(2.1) Qi ◦ φ = φ ◦ (Qi ∧ id) + φ ◦ (id∧Qi) : P(n) ∧ P(n) → P(n).

Historically, three quite different approaches have been used. First, for p 6= 2,

Morava [Mo79] used averaging over the symmetric group Σ2 to produce idempo-

tent operations in (co)bordism with repeated singularities. These operations yield a

canonical multiplication φ on P(n) that is automatically commutative (cf. Mironov

[Mi78, Theorem 4.2]). Associativity by this method involves averaging over Σ3 and

requires p ≥ 5 [Mi78, Theorem 4.1].

The second method is heavily geometric. Mironov [Mi75] and Shimada–Yagita

[SY76] constructed (roughly equivalent) explicit multiplications on P(n) in the Baas

bordism context for any prime p. These apparently depend on a sequence of choices

of Morava manifolds. They automatically satisfy axioms 2.1(A)–(C). Moreover,

Shimada–Yagita [SY76, Theorem 5.25] and Mironov [Mi78, Theorem 2.4] both show

that the obstructions to associativity lie in groups that vanish, and also obtain (F).

The disadvantage of this approach is that uniqueness is difficult to handle.

Third, Würgler [Wü77] developed an entirely algebraic cohomological approach

in terms of comodules, which leads to the existence of φ and the following results.

Lemma 2.2 In the graded stable homotopy category Stab∗:

(i) Any BP-linear map P(n) → P(n), of any degree, can be uniquely written in the

form

(2.2)
∑

I

cIQ
I : P(n) → P(n),

with coefficients cI ∈ P(n)∗ of the appropriate degrees;

(ii) Any BP-bilinear map P(n)∧P(n) → P(n), of any degree, can be uniquely written

in the form

(2.3)
∑

I, J

cI, Jφ ◦ (QI ∧ Q J) : P(n) ∧ P(n) → P(n),

with coefficients cI, J ∈ P(n)∗ of the appropriate degrees;
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(iii) Any BP-trilinear map P(n)∧P(n)∧P(n) → P(n), of any degree, can be uniquely

written in the form

(2.4)
∑

I, J,K

cI, J,Kφ ◦ (φ ∧ id) ◦ (QI ∧ Q J ∧ QK) : P(n) ∧ P(n) ∧ P(n) → P(n),

with coefficients cI, J,K ∈ P(n)∗ of the appropriate degrees.

Proof Part (i) is a strengthened form of Würgler [Wü77, Proposition 3.5], (ii) is

[Wü77, Proposition 4.12], and (iii) is entirely analogous.

Lemma 2.3 The canonical map ρ : P(n) → P(n+1) is a map of ring spectra.

Proof By a slight generalization of (2.3) (also proved by Würgler), any BP-bilinear

map P(n) ∧ P(n) → P(n+1), in particular φ ◦ (ρ ∧ ρ), can be written

∑

I, J

cI, J ρ ◦ φ ◦ (QI ∧ Q J) : P(n) ∧ P(n) → P(n + 1),

with coefficients cI, J ∈ P(n + 1)∗. Since φ ◦ (ρ ∧ ρ) ◦ (η ∧ η) = η, the sparseness

of P(n + 1)∗ leaves ρ ◦ φ as the only candidate for φ ◦ (ρ ∧ ρ). [[This works even for

p = 2, regardless of the choices of multiplication on P(n) and P(n + 1).]]

If we write φ ◦ (η ∧ id) in the form (2.2), the sparseness of P(n)∗ yields Ax-

iom 2.1(C) [[even for p = 2]], since we know φ ◦ (η ∧ η) = η. Then (B) is a formal

consequence of (A), (C), and the BP-linearity of the map BP → P(n).

Since any BP-bilinear multiplication can be written in the form (2.3), the sparse-

ness of P(n)∗ ensures that φ is unique, as long as p ≥ 3. Further, (D) holds, since

φ ◦ T also satisfies (A) and (C), where T : P(n) ∧ P(n) → P(n) ∧ P(n) denotes the

switch map.

We may similarly deduce the associativity of φ, provided p ≥ 5, by writing

φ ◦ (id∧φ) in the form (2.4). We also obtain (F), provided p ≥ 3, by writing Qi ◦φ in

the form (2.3); since (Qi ◦ φ) ◦ (η∧ id) = Qi = (Qi ◦ φ) ◦ (id∧η), the only candidate

is (2.1).

Finally, we should mention that there is now a fourth approach, the brave new ring

context of Elmendorf–Kriz–Mandell–May. See [EKMM96] for p odd [[or Strickland

[St99] for p = 2]].

The Case p = 2: It is well known that there is no commutative multiplication on

P(n) when p = 2. Instead, we see [Bo] that there are exactly two multiplications that

satisfy all of Axioms 2.1 except (D). To make P(n) a ring spectrum, we arbitrarily

choose one of the two good multiplications as φ; then the other is its opposite, φ =

φ ◦ T, which defines the opposite ring spectrum P(n). Nassau [Na02, Theorem 3]

shows that complex conjugation defines an isomorphism of ring spectra Ξ : P(n) ∼=
P(n).
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Mironov [Mi78, Theorem 4.7] computed φ explicitly in the form (2.3) as

(2.5) φ = φ ◦ T = φ + vnφ ◦ (Qn−1 ∧ Qn−1) : P(n) ∧ P(n) → P(n).

From now on, we write Q = Qn−1, in view of its frequent occurrence.

2.2 Products in Homology and Cohomology

We review briefly the various products in P(n)-(co)homology. Their properties are

familiar enough [[except when p = 2]]. We remind the reader that the operations Qi

act on both homology and cohomology.

Given x ∈ P(n)∗(X) and y ∈ P(n)∗(Y ), we have the cohomology cross product

x × y ∈ P(n)∗(X×Y ); by taking Y = X and using the diagonal map of X, we deduce

the cup product xy ∈ P(n)∗(X), which makes P(n)∗(X) a ring. Given a ∈ P(n)∗(X)

and b ∈ P(n)∗(Y ), we have the homology cross product a × b ∈ P(n)∗(X×Y ). All

three products are associative. For p 6= 2, they are also commutative in the sense that

T∗(y×x) = ± x × y, yx = ±xy, and T∗(b×a) = ± a × b. By (2.1), each Qi is a

derivation for all three products.

By taking X as a one-point space, P(n)∗(Y ) and P(n)∗(Y ) become P(n)∗-modules,

and both cross products are P(n)∗-bilinear [[even for p = 2; see below]].

There is also the scalar or Kronecker product 〈x, a〉 ∈ P(n)∗ of x ∈ P(n)∗(X) and

a ∈ P(n)∗(X), which is P(n)∗-bilinear [[even for p = 2; see [Bo]]].

The Case p = 2: There are of course no signs, but the noncommutativity ofφ forces

us to watch carefully for any shuffling of copies of P(n). Nevertheless, we find [Bo]

that the Künneth and duality formulae continue to hold, exactly as stated in [Bo95].

It is immediate from (2.5) that

T∗(y×x) = x × y = x×y + vnQx×Qy in P(n)∗(X×Y ),

where x× y denotes the twisted cross product formed using the opposite multiplica-

tion φ on P(n). For cup products, this implies

yx = xy + vn(Qx)(Qy) in P(n)∗(X),

so that P(n)∗(X) is not commutative in general in the ordinary sense. Alternatively,

these products are TQ-commutative if we replace the standard commutativity isomor-

phism T : A ⊗ B ∼= B ⊗ A everywhere by TQ : A ⊗ B ∼= B ⊗ A, defined by

(2.6) TQ(a ⊗ b) = b ⊗ a + vnQb ⊗ Qa in B ⊗ A.

Similarly, homology is also TQ-commutative, in the sense that

T∗(b × a) = a× b = a × b + vnQa × Qb in P(n)∗(X × Y ).

Taking X to be a point shows that the P(n)∗-actions on P(n)∗(Y ) and P(n)∗(Y )

are independent of the choice of φ. In [Bo], we find that 〈x, a〉 is also independent of

this choice.

There is one surprise, on account of the hidden shuffling, proved in [Bo].
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Proposition 2.4 Given x ∈ P(n)∗(X), y ∈ P(n)∗(Y ), a ∈ P(n)∗(X), and b ∈
P(n)∗(Y ), we have

〈x × y, a × b〉 = 〈x, a〉〈y, b〉 + vn〈x,Qa〉〈Qy, b〉.

If instead we mix the products, we find

(2.7) 〈x × y, a×b〉 = 〈x, a〉〈y, b〉.

3 Proofs of the Main Theorems

In this section, we establish Theorems 1.2 and 1.6. More precisely, we reduce them to

two key lemmas: Lemma 3.1 provides our main splitting, and Lemma 3.4 will imply

that our splittings are best possible.

3.1 Splittings

All our splittings are derived from the following splitting.

Lemma 3.1 For k ≤ g(n,m), where m ≥ n, there is a map θ(m) : P(n,m)
k
→ P(n)

k

that splits the canonical map ρ(m) : P(n)
k
→ P(n,m)

k
, i.e., ρ(m) ◦ θ(m) ≃ id. It is a

map of H-spaces [[except when p = 2 and k = g(n,m)]].

We express this in terms of idempotent P(n)-cohomology operations in Section 5.

A short direct proof of Lemma 3.1 is presented in [BW01], based on the bar spec-

tral sequence. For such k, we show that E∗( P(n,m)
k

) is a quotient of E∗( P(n)
k

),

first for E = P(n), then for E = P(n,m), and that these are free E∗-modules. It

follows by duality that θ(m) exists, but its status as an H-map is left unclear.

We deduce other useful splittings. The canonical map

ρ(m − 1,m) : P(n,m) → P(n,m − 1),

which kills vm, fits into the exact triangle of spectra

(3.1) P(n,m)
vm−−→ P(n,m)

ρ(m−1,m)
−−−−−−→ P(n,m − 1)

δ
−−→ P(n,m).

On homotopy groups, this induces the obvious short exact sequence

0 → Fp[vn, vn+1, . . . , vm]
vm−−→ Fp[vn, vn+1, . . . , vm] → Fp[vn, vn+1, . . . , vm−1] → 0.

Unstably, we have the H-space fibration

P(n,m)
k+2(pm−1)

vm−−→ P(n,m)
k

ρ(m−1,m)
−−−−−−→ P(n,m − 1)

k
.

For k ≤ g(n,m − 1), the composite

(3.2) P(n,m − 1)
k

θ(m−1)
−−−−−→ P(n)

k

ρ(m)
−−−→ P(n,m)

k
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automatically splits ρ(m − 1,m), to yield the decomposition

(3.3) P(n,m)
k
≃ P(n,m − 1)

k
× P(n,m)

k+2(pm−1)
,

where the two injections are (3.2) and vm. This is a decomposition of H-spaces

[[except when p = 2 and k = g(n,m − 1)]].

Proof of Theorem 1.6 This is completely analogous to the proof of [BJW95, Theo-

rem 1.16]. Everything we need is contained in the commutative diagram

(3.4) P(n)
k+2(p j−1)

v j

//

ρ( j)

��

P(n)
k

ρ(m)
//

ρ( j)

��

P(n,m)
k

P(n, j)
k+2(p j−1)

v j

// P(n, j)
k

ρ(m, j)

::vvvvvvvvv

of H-spaces and canonical H-maps, where j > m.

With m given by (1.5), we observe that the spaces Yk and Yk+2(p j−1) appear in the

diagram disguised as P(n,m)
k

and P(n, j)
k+2(p j−1)

. We insert the splittings θ(m) and

θ( j) from Lemma 3.1 to produce the desired decomposition of P(n)
k
, as suggested

by the decomposition of abelian groups

Fp[vn, vn+1, vn+2, . . . ] = Fp[vn, vn+1, . . . , vm] ⊕
⊕
j>m

v j Fp[vn, vn+1, . . . , v j].

(But we warn that our splittings cannot be expected to induce exactly this decompo-

sition of the coefficient ring P(n)∗, and it seems likely that they never do.)

In detail, we map Yk into P(n)
k

by θ(m), which is an H-map [[unless p = 2 and

k = g(n,m)]], and Yk+2(p j−1), for each j > m, by the H-map (in all cases)

Yk+2(p j−1)
θ( j)

−−−→ P(n)
k+2(p j−1)

v j
−−→ P(n)

k
.

We multiply these together, using the H-space structure of P(n)
k
, to form a map

f : W → P(n)
k

from the restricted direct product W (the union of all finite subprod-

ucts) of the based Y -spaces mentioned.

We filter P(n)∗ by the ideals J j . We note that v j ◦ θ( j) induces a homomorphism

P(n, j)∗ → J j−1 on homotopy groups that induces the quotient isomorphism

P(n, j)∗ = Fp[vn, vn+1, . . . ]/ J j
v j

−−→ J j−1/ J j .

This is enough to guarantee that f induces an isomorphism on homotopy groups and

is thus a homotopy equivalence. Because the connectivities of the Y -spaces increase,

W is homotopy-equivalent to the desired full product, and we have (1.6).

The same method applies to P(n, h)
k
, with the simplification that the product

W is now finite. (One can also produce decompositions like (1.7) directly from the

splittings (3.3) by induction on h, though the resulting maps are different and far

more complicated.)

For k = 0, the splitting θ(n − 1) : Y0 = Fp → P(n)
0

is obvious and unique up to

homotopy. We can still use diagram (3.4).
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3.2 Indecomposability

On the other hand, we need to know that Yk does not split.

Lemma 3.2 A map f : Yk → Yk is a homotopy equivalence if and only if it induces an

isomorphism on the bottom homotopy group πk(Yk) ∼= Fp.

Corollary 3.3 The space Yk does not decompose as a product.

In Section 12, we prove the following about P(n) and deduce Lemma 3.2 from it.

Lemma 3.4 Represent an unstable operation r : P(n)k(–) → P(n)m(–), where k > 0

and m > 0, by the map r : P(n)
k
→ P(n)

m
. Then the induced homomorphism on

homotopy groups

(3.5) r∗ : Σ
kP(n)∗ ∼= π∗( P(n)

k
)

π∗(r)
−−−−→ π∗( P(n)

m
) ∼= Σ

mP(n)∗

has the properties, for any element v ∈ P(n)∗:

(i) r∗Σ
k(vnv) = vnr∗Σ

kv;

(ii) r∗Σ
k(vqv) ≡ vqr∗Σ

kv mod Iq = (vn, vn+1, . . . , vq−1), provided k > g(n, q − 1).

3.3 Construction of Maps

Our strategy for proving Theorem 1.2 is to construct enough maps to and from the

spaces P(n)
k
.

Lemma 3.5 If X is a space for which k(n)∗(X) is a free k(n)∗-module, then P(n)∗(X)

is a free P(n)∗-module.

Proof Lemmas 4.7 (with k = m = n) and 2.1 of Yosimura [Yo76] show that

P(n)∗(X) is a flat P(n)∗-module. Such modules are free by [Yo76, Proposition 1.5].

Lemma 3.6 Let X be a (k−1)-connected space with πk(X) a nonzero finite abelian p-

group and suppose k(n)∗(X) is a free k(n)∗-module. Then there exists a map

f : X → P(n)
k

that induces a nonzero homomorphism f∗ : πk(X) → πk( P(n)
k

) ∼= Fp

on the bottom homotopy groups.

Proof Since P(n)∗(X) is a free P(n)∗-module by Lemma 3.5, the universal coeffi-

cient theorem [Bo95, Theorem 4.14] gives P(n)∗(X) ∼= Hom∗
P(n)∗

(P(n)∗(X), P(n)∗).

As X is (k − 1)-connected, P(n)k(X) ∼= Hk(X; Fp) ∼= πk(X) ⊗ Fp 6= 0, and it is clear

that suitable cohomology classes f ∈ P(n)k(X), i.e., maps f : X → P(n)
k
, exist.
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Proof of Theorem 1.2(i) and (ii) We first note that for k > 0, the space P(n)
k

sat-

isfies Axioms 1.1. Axiom (A) is clear. Axiom (B) holds by [RW96]. Axiom (C) is

easy. Take any element Σ
kv ∈ Σ

kP(n)∗ ∼= π∗( P(n)
k

), where v ∈ P(n)h. Viewed

as a cohomology class, it is vuk+h ∈ P(n)∗(Sk+h). Multiplication by v on P(n)∗(–) is

represented by the map we want, v : P(n)
k+h

→ P(n)
k
.

Then Yk, being a retract of P(n)
k
, also satisfies the axioms. By Corollary 3.3, it

is indecomposable. Uniqueness of Yk and our decompositions will follow from (ii),

under the assumption that all our H-spaces have finite type.

For the induction step in (ii) given any (k−1)-connected space X that satisfies the

axioms, define m by (1.5). Then Lemma 3.6 provides a map

h : X → P(n)
k

ρ(m)
−−−→ P(n,m)

k
= Yk

that induces a nonzero homomorphism h∗ : πk(X) → πk(Yk) ∼= Fp. Choose α ∈
πk(X) such that h∗α = 1 ∈ Fp; then Axiom 1.1(C) provides a map

f : Yk = P(n,m)
k

θ(m)
−−−→ P(n)

k
→ X

that induces f∗1 = α. By Lemma 3.2, h ◦ f : Yk → Yk is a homotopy equivalence. We

use the homotopy fibre j : F → X of h and the multiplication µ on X to construct a

homotopy equivalence

Yk × F
f× j

−−−→ X × X
µ

−−→ X.

Then F, being a retract of X, again satisfies the axioms.

We begin the induction with Z0 as the given space, and find a sequence of equiva-

lences Zi ≃ Yki
× Zi+1 for i ≥ 0. By finiteness, the spaces Zi become more and more

highly connected as i increases, and we deduce Z0 ≃
∏

i Yki
as required.

4 k(n)-Towers with vn-Free Homotopy

In this section, we prove Theorem 1.4. We must show that the original Axiom 1.1(C)

is equivalent (in the presence of the other axioms) to Axiom (C ′), which asserts that

X is a k(n)-tower with vn-free homotopy. Lemma 4.1 shows that (C ′) implies (C),

while Lemma 4.3 gives the converse.

Lemma 4.1 Suppose the connected H-space X is a k(n)-tower of finite type with

vn-free homotopy. Then Axiom (C) holds: given k > 0, any map Sk → X factors

through the standard map uk : Sk → P(n)
k

to yield a map P(n)
k
→ X.

We first show that it does not matter how far up the tower we can lift.

Lemma 4.2 In diagram (1.1), any map f : P(n)
k
→ Xi−1 lifts to a map P(n)

k
→ X.
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Proof With zi as in Definition 1.3, we note that vc
n(zi ◦ f ) = f ∗(vc

nzi) = 0 in

k(n)∗( P(n)
k

). But by [RW96], k(n)∗( P(n)
k

) and hence k(n)∗( P(n)
k

) contain no

vn-torsion; therefore zi ◦ f ≃ 0 and f lifts to f ′ : P(n)
k
→ Xi .

By induction and limits, f lifts all the way to X.

Proof of Lemma 4.1 For any connected space Y and k > 0, let us call an element

α ∈ πk(Y ), or map α : Sk → Y , extendable if it extends over uk to a map P(n)
k
→ Y .

All elements of π∗(k(n)
q
) ∼= Σ

q
Fp[vn] are obviously extendable. It follows from

diagram (1.2) that every element in Ker[π∗(Xi) → π∗(Xi−1)] is extendable.

By Lemma 4.2, any extendable element of π∗(Xi−1) lifts in diagram (1.1) to some

extendable element of π∗(X).

The sum of any two extendable elements of πk(X) is again extendable: given

f1, f2 : P(n)
k
→ X, we use the given multiplication µ on X to construct the map

P(n)
k

∆−−→ P(n)
k
× P(n)

k

f1× f2−−−−→ X × X
µ

−−→ X.

Together, these facts imply that every element of π∗(X) is extendable.

4.1 The Space Yk

A countable product of k(n)-towers with vn-free homotopy is another such tower

(provided it has finite type). In view of Theorem 1.2(ii), it suffices to prove the fol-

lowing.

Lemma 4.3 For each k > 0, the space Yk is a k(n)-tower with vn-free homotopy.

We first destabilize the Johnson–Wilson construction [JW75, §4] of a filtration

of the spectrum P(n) whose subquotients are suspensions of k(n), and adapt it for

P(n,m). The result will be a tower

(4.1) · · · → W3 → W2 → W1 → W0 = P(n,m)
k

with trivial homotopy limit, where each Wi is the homotopy fibre of a map Wi−1 →
k(n)

q(i)
that is epic on homotopy groups. This depends on the following lemma,

where we recall that π∗( P(n,m)
k

) ∼= Σ
kP(n,m)∗ etc.

Lemma 4.4 Given v ∈ P(n,m)h and k ≤ g(n,m), where v 6= 0, there exist an integer

c and stable P(n)-operation r such that the composite

s : P(n,m)
k

θ(m)
−−−→ P(n)

k

r
−−→ P(n)

k+h−2cN

ρ(n)
−−−→ k(n)

k+h−2cN

induces s∗Σ
kv = Σ

k+h−2cNvc
n on homotopy groups.

Proof Lemma 1.12 of [JW75], viewed unstably, supplies c and r.
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We construct the tower (4.1) by induction, starting from W0 = P(n,m)
k
. Given

j : Wi−1 → P(n,m)
k
, where Wi−1 is (k + h − 1)-connected and j∗ : π∗(Wi−1) →

π∗( P(n,m)
k

) is monic, we choose a bottom nonzero element u ∈ πk+h(Wi−1) to

kill. Lemma 4.4 provides a map s : P(n,m)
k
→ k(n)

k+h−2cN
such that s∗ j∗u =

Σ
k+h−2cNv c

n . For dimensional reasons, s ◦ j factors through

v c
n : k(n)

k+h
→ k(n)

k+h−2cN

to produce the desired map Wi−1 → k(n)
k+h

, with fibre Wi .

This is the wrong kind of tower for Definition 1.3. To correct it, we could take the

homotopy fibre Xi of each map Wi → P(n)
k
, to express ΩP(n,m)

k
= P(n,m)

k−1
as

a k(n)-tower with vn-free homotopy. This approach fails to produce a suitable tower

for P(n,m)
k

when k = g(n,m). Our solution is to observe that it is inefficient to

deloop and then take fibres; instead, we prove only what we actually need.

Lemma 4.5 Given a (k + h)-connected map q : P(n,m)
k
→ X and any map

s : P(n,m)
k
→ k(n)

k+h−2cN
,

there exists a vn-torsion map z : X → k(n)
k+h+1

such that s is one value of the following

Toda bracket:

s ∈ 〈v c
n , z, q〉 : P(n,m)

k
→ k(n)

k+h−2cN
.

Proof We are using the adjoint (but equivalent) description of a Toda bracket in

terms of loop spaces instead of suspensions. We build the commutative diagram

Figure 1 in which the two rows are fibration sequences and l = k + h. We start

P(n,m)
k

q ′

��
�

�

�
q

$$IIIIIIIIIII

k(n)
l

//

=

��

X ′ //

g

��

X
z

//

f

��

k(n)
l+1

=

��

k(n)
l

−vc
n

// k(n)
l−2cN

π
// G l−2cN

δ
// k(n)

l+1

vc
n

// k(n)
l−2cN+1

Figure 1: Construction of the Toda bracket 〈vc
n, z, q〉

with the obvious fibration as the bottow row, where (stably) G denotes the cofibre of

vc
n : k(n) → k(n), with homotopy Fp[vn]/(vc

n). By the connectivity of q, q∗ : G j(X) →
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G j( P(n,m)
k

) is an isomorphism for j ≤ k + h − 2cN + 2N − 1, so that π ◦ s factors

uniquely through q to yield a map f such that f ◦ q = π ◦ s. We put z = δ ◦ f , which

automatically satisfies v c
n z = 0. We define X ′ as the homotopy fibre of z, and fill in g

to form a morphism of fibrations.

Since X ′ may be constructed as a pullback, we can fill in q ′ to lift q and satisfy

g ◦ q ′
= s. (Equivalently, v c

n ◦ [P(n,m)
k
, k(n)

k+h
] is part of the indeterminacy of the

Toda bracket.) Then by definition, g ◦ q ′
= s is one value of the Toda bracket.

Proof of Lemma 4.3 We build the desired tower for P(n,m)
k

by induction, starting

from a point as X0. Suppose we have constructed a map qi−1 : P(n,m)
k
→ Xi−1

that induces a surjection qi−1∗ : Σ
kP(n,m)∗ → π∗(Xi−1) on homotopy groups, with

kernel K an Fp[vn]-submodule. We choose a bottom nonzero element Σ
kv ∈ Kk+h to

kill, where K j = 0 for j < k + h. Then Lemma 4.4 provides a map s : P(n,m)
k
→

k(n)
k+h−2cN

. We use Lemma 4.5 to build Figure 1, taking qi−i as q and Xi−1 as X.

We next take homotopy groups of Figure 1. By Lemma 3.4(i) applied to

r ◦ θ(m) ◦ ρ(m) : P(n)
k
→ P(n)

k+h−2cN
, s∗ is a homomorphism of Fp[vn]-modules.

By exactness and the hypothesis that q∗Σ
k(vt

nv) = 0, q ′
∗(vt

nv) must lift to −Σ
k+hvt

n ∈
π∗( k(n)

k+h
). It now follows that q ′

∗ is also epic, with kernel

K ′
= Ker

[
s∗|K : K → Σ

k+h−2cN
Fp[vn]

]
⊂ K,

a strictly smaller Fp[vn]-submodule of Σ
kP(n,m)∗. We take X ′ as Xi and q ′ as qi .

The kernels K become more and more highly connected as i increases, hence

P(n,m)
k

is the homotopy limit of the spaces Xi .

5 Splittings of P(n)-Cohomology

In this section, we translate the H-space splittings in Section 3 into splittings of

P(n)-cohomology. We also deduce Theorems 1.12 and 1.13.

We have yet to prove Lemmas 3.1, 3.2 and 3.4. Lemma 3.1 is equivalent to the

following statement for the represented functors. (We do not mention Lemmas 3.2

and 3.4 again until Section 12.)

Lemma 5.1 Assume that k ≤ g(n,m), where m ≥ n. Then there is a splitting

θ(m) : P(n,m)k(X) → P(n)k(X)

of ρ(m) : P(n)k(X) → P(n,m)k(X) that satisfies ρ(m) ◦ θ(m) = id and is natural for

spaces X. It is additive [[except when p = 2 and k = g(n,m)]].

This we actually prove in Section 9 [[except the nonadditive case; see [Bo]]], by con-

structing an idempotent cohomology operation θ(m) in P(n)k(X). Unlike the case of

BP, the use of nonadditive operations yields no further splittings [[unless p = 2]].

We next translate equation (3.3).
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Corollary 5.2 For k ≤ g(n,m − 1), where m > n, we have the natural short exact

sequence of abelian groups

0 → P(n,m)k+2(pm−1)(X)
vm−−→ P(n,m)k(X)

ρ(m−1,m)
−−−−−−→ P(n,m − 1)k(X) → 0.

This splits naturally [[unless p = 2 and k = g(n,m − 1) ]].

This implies our homological dimension bound, by the methods of [JW73].

Proof of Theorem 1.12 Following Yosimura [Yo76, Theorem 4.8], we need to show

that

(5.1) ρ(m − 1,m) : P(n,m)i(X) → P(n,m − 1)i(X)

is epic for all i. For i ≤ 2(pm − 1), this is trivial, by the exact sequence

P(n,m)i(X)
ρ(m−1,m)

−−−−−−→ P(n,m − 1)i(X)
δ

−−→ P(n,m)i−2(pm−1)−1(X)

arising from the exact triangle (3.1).

For i > 2(pm − 1), we embed X in R
2q+1, where q is the dimension of X, and take

a regular neighborhood V of X. By Poincaré duality, (5.1) is equivalent to

ρ(m − 1,m) : P(n,m)2q+1−i(V, ∂V ) → P(n,m − 1)2q+1−i(V, ∂V ).

This is epic by Corollary 5.2, because by hypothesis

2q + 1 − i ≤ (g(n,m) − 2) + 1 − (2(pm − 1) + 1) = g(n,m − 1).

We also translate Theorem 1.6, using the splittings made explicit in Section 3, and

finally deduce Theorem 1.13. (Decompositions like (5.3) also follow directly from

Corollary 5.2 by induction on h, though the resulting homomorphisms are different.)

Theorem 5.3 Let X be any space and suppose that m ≥ n > 0.

(i) If k ≤ g(n,m) [[replaced by k < g(n,m) if p = 2]], we have the natural abelian

group decomposition

(5.2) P(n)k(X) ∼= P(n,m)k(X) ⊕
∏

j>m

P(n, j)k+2(p j−1)(X),

where the first factor on the right is injected by θ(m), and the others by

P(n, j)k+2(p j−1)(X)
θ( j)

−−−→ P(n)k+2(p j−1)(X)
v j

−−→ P(n)k(X).

Hence, by composition with ρ(h) : P(n)k(X) → P(n, h)k(X) for any h > m,

(5.3) P(n, h)k(X) ∼= P(n,m)k(X) ⊕
h⊕

j=m+1

P(n, j)k+2(p j−1)(X).

These decompositions are maximal if k > g(n,m − 1) [[also for k = g(n,m − 1) if

p = 2]]. (They are in no sense decompositions as P(n)∗-modules.)
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(ii) If p = 2 and k = g(n,m), we replace (5.2) and (5.3) by the natural short exact

sequences

0 →
∏
j>m

P(n, j)k+2 j+1−2(X) → P(n)k(X)
ρ(m)

−−−→ P(n,m)k(X) → 0,

0 →
h⊕

j=m+1

P(n, j)k+2 j+1−2(X) → P(n, h)k(X)
ρ(m,h)

−−−−→ P(n,m)k(X) → 0.

Because P(n, n) = k(n) is so familiar, we break out the special case m = n. For

h < 2(pn − 1), we can even replace k(n) by the periodic Morava K-theory K(n).

Corollary 5.4 For h ≤ 2pn, where n > 0, we have, for all spaces X, the natural

abelian group decomposition

P(n)h(X) ∼= k(n)h(X) ⊕
∏
j>n

P(n, j)h+2(p j−1)(X),

except that if p = 2 and h = 2n+1, we have only the natural short exact sequence

0 →
∏
j>n

P(n, j)h+2 j+1−2(X) → P(n)h(X)
ρ(n)

−−−→ k(n)h(X) → 0.

Remark All the splittings exhibited above depend on the choice of θ(m), which is

not canonical and does not respect multiplication by v j .

Proof of Theorem 1.13 As X is finite-dimensional, the sum in (1.9) is essentially

finite. Lemma 5.1 shows that ρ(m) is epic. It is clear from Theorem 5.3 that Ker ρ(m)

is contained in the sum, and must therefore be the sum.

6 Stable Operations in P(n)-Cohomology

In this section, we describe the stable operations in P(n)-cohomology P(n)∗(–) in

the style of [Bo95]. The results are old and well known [[except for p = 2]], but we

include them for completeness and ease of reference; more importantly, they serve as

a pattern for Sections 7 and 10.

6.1 Monoidal Structure

(For the language of monoidal categories and functors, see [Ma71, Ch. VII].) Since

P(n)∗ is a commutative ring [[even if p = 2]], the graded category (FMod∗, ⊗̂, P(n)∗)

of complete Hausdorff filtered P(n)∗-modules is a symmetric monoidal category,

with all (completed) tensor products taken over P(n)∗. The cross product makes

P(n)-cohomology a monoidal functor,

P(n)∗(–) : (Hoop,×, point) → (FMod, ⊗̂, P(n)∗).
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(Conveniently, P(n)∗(X) has no phantom classes and so is already complete Haus-

dorff.) For homology, we similarly have the monoidal functor

P(n)∗(–) : (Ho,×, point) → (Mod,⊗, P(n)∗),

with values in the category Mod of discrete P(n)∗-modules. Both functors are sym-

metric for p 6= 2.

The cohomology version for spectra and graded maps is

P(n)∗(−, o) : (Stabop
∗ ,∧, S

0) → (FMod∗, ⊗̂, P(n)∗),

and similarly for homology. (We include the basepoint subspectrum o in our nota-

tion as a reminder that all stable (co)homology is reduced, and to distinguish it from

the (co)homology of a space, which here will generally be absolute.)

6.2 Operations

Because Γ = P(n)∗(P(n), o) is a free P(n)∗-module, we may identify its dual

P(n)∗-module DΓ with A = P(n)∗(P(n), o), the algebra of all stable operations in

P(n)-cohomology, and have available all the stable machinery and results of [Bo95].

In particular, we have the monoidal functor

S : (FMod∗, ⊗̂, P(n)∗) → (FMod∗, ⊗̂, P(n)∗)

defined by SM = FMod∗(A,M). If M is filtered by submodules FaM, we filter SM

by the submodules FaSM = SFaM; as in [Bo95], SM is again complete Hausdorff.

The ring spectrum structure of P(n) gives S its monoidal structure (see diagram (6.4)

below), which is symmetric for p 6= 2. (As in [Bo95], care is needed in keeping track

of the many P(n)∗-module actions, some of which are not obvious.)

The action of stable P(n)-cohomology operations is visibly encoded in the mon-

oidal natural transformation

(6.1) ρX : P(n)∗(X) → S(P(n)∗(X)) = FMod∗(P(n)∗(P(n), o), P(n)∗(X))

defined by ρXx = x∗, where we treat x ∈ P(n)∗(X) as a map of spectra x : X+ → P(n)

and X+ denotes the disjoint union of X and a (new) basepoint.

6.3 The Coaction

To convert the action of A into a coaction by Γ, we recall the natural isomorphism

[Bo95, (11.4)]

θM : S ′M = M ⊗̂Γ ∼= FMod∗(DΓ,M) ∼= FMod∗(A,M) = SM,

given on x ∈ M, c ∈ Γ, and r ∈ A ∼= DΓ by

(6.2) ((θM)(x ⊗ c))r = ±〈r, c〉x,

with the expected sign. We use it to transfer all the structure from the functor S to S ′

and replace (6.1) by the equivalent natural transformation

(6.3) ρX : P(n)∗(X) → S ′P(n)∗(X) = P(n)∗(X) ⊗̂Γ.
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6.4 The Monoid

The resulting monoidal structure on S ′ is necessarily induced by a monoid structure

on the P(n)∗-module Γ (as we see by naturality from the case M = N = P(n)∗ in

diagram (6.4), below), and conversely. We simply need to compute it.

Lemma 6.1 The following monoid structure on Γ, which is inherited from the mon-

oidal functor S, makes the natural transformation (6.3) monoidal:

(i) If p is odd, the multiplication on Γ is the obvious one,

Γ ⊗ Γ = P(n)∗(P(n), o) ⊗ P(n)∗(P(n), o)
×

−−→ P(n)∗(P(n) ∧ P(n), o)

φ∗−−→ P(n)∗(P(n), o) = Γ,

as inferred by writing Γ = P(n)∗(P(n), o). The unit homomorphism of Γ is

P(n)∗ = P(n)∗(S0, o)
η∗−−→ P(n)∗(P(n), o) = Γ.

(ii) If p = 2, the multiplication is instead

Γ ⊗ Γ = P(n)∗(P(n), o) ⊗ P(n)∗(P(n), o)
×

−−→ P(n)∗(P(n) ∧ P(n), o)

φ∗−−→ P(n)∗(P(n), o) = Γ,

which is better suggested by writing Γ = P(n)∗(P(n), o). The unit is unaffected.

Proof The multiplication φ on P(n) induces

φ∗ : DΓ ∼= P(n)∗(P(n), o) → P(n)∗(P(n) ∧ P(n), o) ∼= DΓ ⊗̂DΓ,

with the help of the Künneth formula [Bo95, Theorem 4.19]. The natural trans-

formations ζ(M,N) for S ′ and S form the left and right sides of the commutative

diagram

(6.4) (M ⊗̂Γ) ⊗̂(N ⊗̂Γ)
θM⊗θN

//

∼
=

��

FMod∗(DΓ,M) ⊗̂ FMod∗(DΓ,N)

∼
=

��

M ⊗̂N ⊗̂(Γ ⊗ Γ)

M⊗N⊗φ

��

FMod∗(DΓ ⊗̂DΓ,M ⊗̂N)

FMod∗(φ∗,id)

��

M ⊗̂N ⊗̂Γ

θ(M b⊗ N)
// FMod∗(DΓ,M ⊗̂N)
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which features the multiplication φ : Γ ⊗ Γ → Γ. We evaluate on x ⊗ c ⊗ y ⊗ d,

where x ∈ M, y ∈ N , and c, d ∈ Γ. By (6.2), the lower route gives the element

r 7→ ±〈r, cd〉x ⊗ y of FMod∗(DΓ,M ⊗̂N). The upper route gives

r ⊗ s 7→ ±〈r, c〉〈s, d〉x ⊗ y

in FMod∗(DΓ ⊗̂DΓ,M ⊗̂N). Assuming p 6= 2, we can rewrite this as ±〈r × s, c ×
d〉x ⊗ y; then in FMod∗(DΓ,M ⊗̂N) we find

r 7→ ±〈φ∗r, c × d〉x ⊗ y = ±〈r, φ∗(c × d)〉x ⊗ y.

Thus cd = φ∗(c × d) (with no sign) as expected, which is (i).

[[If p = 2, this calculation is false; we must use (2.7) instead, which states that

〈r, c〉〈s, d〉 = 〈r × s, c × d〉. Then cd = φ∗(c × d), for (ii).]]

The unit z : P(n)∗ → SP(n)∗ takes 1 = η ∈ P(n)∗ to the homomorphism

DΓ ∼= P(n)∗(P(n), o)
η∗

−−→ P(n)∗(S0, o) ∼= P(n)∗,

in other words, r 7→ 〈η∗r, 1〉 = 〈r, η∗1〉. Comparison with (6.2) shows that the

corresponding element of S ′P(n)∗ = P(n)∗ ⊗ Γ ∼= Γ is η∗1.

If X is a point in (6.3), we find the right unit ring homomorphism

(6.5) ηR : P(n)∗ → S ′P(n)∗ = P(n)∗ ⊗ Γ ∼= Γ,

which is used to make Γ a right P(n)∗-module (hence a bimodule). Since ρ is mon-

oidal, this action makes (6.3) a homomorphism of P(n)∗-modules.

6.5 The Hopf Algebroid

Now we add the algebra structure of A. Exactly as in [Bo95, §10], composition of

operations and the identity operation induce natural transformations ψ : S → SS

and ǫ : S → I. These make S a monoidal comonad in the category FMod, and (6.1)

makes P(n)∗(X) an S-coalgebra.

We transfer this structure too to S ′. The resulting monoidal comonad structure

on S ′ is necessarily induced by a Hopf algebroid structure on Γ (as we see by taking

M = P(n)∗), and conversely. This structure consists of a coassociative comultipli-

cation ψS : Γ → Γ ⊗ Γ with counit ǫS : Γ → P(n)∗. These behave exactly as in

Adams [Ad74] or [Bo95, Theorem 11.35]; in particular, ψS and ǫS are homomor-

phisms of P(n)∗-bimodules and algebras. [[This all works without change for p = 2;

see [Bo].]]

Proposition 6.2 The stable operations in P(n)-cohomology are encoded in the Hopf

algebroid Γ = P(n)∗(P(n), o) [[replaced by Γ = P(n)∗(P(n), o) for p = 2]].

The discussion of the structure of Γ carries over from the case K(n) in [Bo95] with

little change [[except that we allow p = 2]]. We even use the same test spaces.
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The One-Point Space We already discussed this in (6.5). The coaction ρ reduces to

the ring homomorphism ηR, which is determined by the elements

wk = ηRvk ∈ Γ2(pk−1) for k ≥ n.

6.6 Complex Orientation

Our next test space is complex projective space CP∞. As P(n) inherits a complex

orientation from BP (or MU ), we have P(n)∗(CP∞) = P(n)∗[[x]], the formal power

series ring generated by the Chern class x = x(ξ) of the Hopf line bundle ξ over CP∞,

filtered by powers of the ideal (x).

The coaction ρ for CP∞ defines elements b j ∈ Γ2 j−2 by the formula [Bo95,

(13.2)]

(6.6) ρx = b(x) =

∞∑

j=1

x j ⊗ b j in P(n)∗(CP∞) ⊗̂Γ ∼= Γ[[x]].

Here, b(x) is a useful formal abbreviation for the right side. As always in the stable

context [Bo95, Proposition 13.4], b1 = 1 and b0 = 0.

Further, the comultiplication ψS is given on bi as the coefficient of xi in

(6.7) ψSb(x) =

∞∑

j=1

b(x) j ⊗ b j in (Γ ⊗ Γ)[[x]],

and ǫSb j = 0 for all j > 1.

Since P(n) is p-local, we need only the accelerated elements b( j) = bp j ∈ Γ2(p j−1)

for j ≥ 0, where b(0) = 1; the other b’s are expressible in terms of these and the v’s

and w’s by [Bo95, Lemma 13.7].

The p-th power map ζ : CP∞ → CP∞, whose bundle interpretation is ζ∗ξ =

ξ⊗p, induces in cohomology

ζ∗x = [p](x) =

∞∑

i=N

gix
i+1 in P(n)∗(CP∞) = P(n)∗[[x]]

for certain coefficients gi ∈ P(n)2i . This formal power series is known as the p-series

for P(n). There are no lower terms as g0 = p = 0 in P(n)0. (The elements gi are

traditionally written ai , but we rename them in order to avoid confusion with other

elements, also named ai , that appear shortly.)

We need only one standard fact [RW77, Theorem 3.11(b)] about the p-series:

(6.8) [p](x) ≡ vkxpk

mod (vn, . . . , v̂k, . . . )

for any k ≥ n, where the ideal is generated by all the v’s except vk. In words, [p](x)

contains terms vkxpk

but not λvi
kxq for any i > 1. In particular,

(6.9) [p](x) = vnxpn

+ vn+1xpn+1

+ higher terms.
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Hence as k varies, we have

(6.10) [p](x) ≡
∞∑

k=n

vkxpk

mod V 2,

where V denotes the maximal ideal (vn, vn+1, vn+2, . . . ) ⊂ P(n)∗.

Naturality of ρ with respect to the map ζ yields the identity [Bo95, (13.11)]

(6.11) b
(

[p](x)
)

= [p]R

(
b(x)

)
=

∞∑

i=N

b(x)i+1ηRgi in Γ[[x]].

The lowest power of x that occurs is xpn

.

Definition 6.3 For each k ≥ n, we define the k-th main stable relation (Rk) as the

coefficient of xpk

in (6.11).

Since b(0) = 1, the first relation (Rn) is simply vn1 = wn, which implies that every

stable operation is vn-linear. For k > n, (6.10) shows that (6.11) has a term wkxpk

on

the right, and (Rk) becomes an inductive formula for wk in terms of the v’s and b’s

and lower w’s.

6.7 Cohomology of a Lens Space, for p Odd

Our final test space is the 2N-skeleton L of the lens space K(Z/p, 1). Geometrically, L

is the orbit space of the standard Z/p -action on the unit sphere S2N+1 ⊂ C
N+1 given

as complex multiplication by Z/p ⊂ S1 ⊂ C, with the top cell omitted by requiring

the last coordinate to be real non-negative, up to the action of Z/p. (Retaining the

top cell, as in [Bo95], adds some extra complication but offers little benefit.)

Following [Bo95, §14], its cohomology is

(6.12) P(n)∗(L) =
(

E(u) ⊗ TPn(x)
)/

(uxN ),

because the Atiyah–Hirzebruch spectral sequence can support no differential. Here,

x is induced from the Chern class of the Hopf line bundle on CPN , which is a quo-

tient space of L, and u is uniquely defined as restricting to the standard generator

u1 ∈ P(n)∗(S1), where we recognize the 1-skeleton L1 of L as the circle S1.

Since x is a Chern class, the coaction ρL is given on x by naturality as ρLx = b(x).

Although L is not an H-space, there are, as in [Bo95, (14.31)], partial multiplications

L2k × L2m → L on the skeletons whenever k + m = N , which imply that

(6.13) ρLu = u⊗1 +

n−1∑

i=0

xpi

⊗a(i) in P(n)∗(L) ⊗ Γ

for certain elements a(i) ∈ Γ2pi−1 that this equation defines. (We warn that these

generators differ from Würgler’s [Wü77] and Yagita’s [Ya77] generators ai by the
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conjugation in Γ; as a result, certain formulae become transposed. Our generators

are chosen for compatibility with [Bo95, Wi84], because they destabilize properly

in Sections 7 and 10.) The element a(n) does not exist because u fails to lift to the

2pn-skeleton of the lens space. As in [Bo95, Theorem 14.32], the coalgebra structure

is given by

(6.14) ψSa(k) = a(k)⊗1 +

k−1∑

i=0

b
pi

(k−i)⊗a(i) + 1⊗a(k)

and ǫSa(k) = 0.

6.8 Cohomology of Real Projective Space, for p = 2

Here, the same test space L is better known as real projective space RP2N . It remains

true that the Atiyah–Hirzebruch spectral sequence can support no differential, so that

(6.15) P(n)∗(RP2N ) = P(n)∗[t]/(t2N+1),

generated by the unique nonzero element t ∈ P(n)1(RP2N ). As above, we find that

(6.16) ρt = t⊗1 +

n−1∑

i=0

t2i+1

⊗a(i),

which defines elements a(i) ∈ Γ2i+1−1. Indeed, this formula is identical to (6.13),

since x = t2 is the Chern class of the complexified real Hopf line bundle. Thus (6.14)

remains valid for p = 2.

6.9 Summary

Würgler [Wü77] and Yagita [Ya77] both proved that we now have enough elements

of Γ to handle all stable operations.

Theorem 6.4 The stable operations in P(n)-cohomology are dual to the Hopf alge-

broid Γ = P(n)∗(P(n), o) [[replaced by P(n)∗(P(n), o) if p = 2]], which is generated as

a P(n)∗-algebra by the elements b( j) and a(i) defined by (6.6) and (6.13) [[replaced by

(6.16) if p = 2]].

(i) For odd p, as a P(n)∗-algebra,

Γ = P(n)∗(P(n), o) = E(a(0), a(1), . . . , a(n−1)) ⊗ P(b(1), b(2), b(3), . . . ).

(ii) For p = 2, as a P(n)∗-algebra,

Γ = P(n)∗(P(n), o) = P(a(0), a(1), . . . , a(n−1), b(n+1), b(n+2), . . . ),

and the elements b( j) for j ≤ n are given by the relations

(6.17) a2
(i) = b(i+1) for 0 ≤ i ≤ n − 1.
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(iii) As a left P(n)∗-module, Γ is free with a basis consisting of all monomials

aIb J
= ai0

(0)a
i1

(1) · · · a
in−1

(n−1)b
j1

(1)b
j2

(2)b
j3

(3) · · · ,

with multi-indices I = (i0, i1, . . . , in−1) and J = ( j1, j2, . . . ) in which each ir = 0

or 1.

(iv) The right P(n)∗-action on Γ is given by multiplication by the elements

wk = ηRvk, where wn = vn1 and wk is determined inductively for k > n by the main

relation (Rk) (see Definition 6.3).

(v) The comultiplication ψS : Γ → Γ ⊗ Γ is the P(n)∗-algebra homomorphism

given on the generators by (6.7) and (6.14).

(vi) The counit ǫS : Γ → P(n)∗ is the P(n)∗-algebra homomorphism given on the

generators by ǫSa(i) = 0 for all i and ǫSb( j) = 0 for j > 0.

Proof What survives intact from Würgler [Wü77, Theorem 2.13] and Yagita [Ya77,

Lemma 3.5], even for p = 2, is (iii) (using the conjugate generators to the a(i)). Parts

(i), (iv), (v) and (vi) need no further comment.

[[In (ii), commutativity is not trivial; see Nassau [Na02, Bo]. Since t2 is a Chern

class, (ρt)2
= ρ(t2) = b(t2). Comparing the coefficients of t2i+2

with the help of (6.6)

and (6.16), we deduce (6.17) for i < n − 1.

This argument fails for i = n − 1, as t2n+1

= 0; nevertheless, the result still holds

by [Na02, Theorem 2], which corrects [KW87]. Alternatively, the map of ring spectra

P(n) → P(n + 1) in Lemma 2.3 sends each generator of Γ(n) = Γ to its namesake in

Γ(n + 1). As a2
(n−1) = b(n) in Γ(n + 1), the only candidates for a2

(n−1) in Γ(n) are b(n)

and b(n) + vn1. Since ǫS(a2
(n−1)) = (ǫSa(n−1))

2
= 0, we must choose b(n).]]

7 Additive Operations in P(n)-Cohomology

In this section, we describe the additive unstable operations in P(n)-cohomology in

the style of [BJW95], in terms of a certain bigraded algebra Q∗
∗, which, like Γ, is a

P(n)∗-bimodule equipped with a coalgebra structure (ψA, ǫA) (called (Q(ψ),Q(ǫ))

in [BJW95]) that encodes the composition of operations and the identity operation.

Although the results bear a strong formal resemblance to the stable results in Sec-

tion 6, the stable proofs do not carry over; instead, one has to compute the whole

Hopf ring in Section 11 and then take the indecomposables.

For p odd, we define Q∗
∗ = QP(n)∗( P(n)

∗
), the algebra of indecomposables in

the Hopf ring P(n)∗( P(n)
∗

). Specifically, Qk
i denotes the group of indecomposables

in degree i of the Hopf algebra P(n)∗( P(n)
k

); its elements have total degree i − k in

Q∗
∗ (and this is the degree that governs signs). The multiplication and unit in Q∗

∗ are

induced from ◦-multiplication and the element [1] in the Hopf ring by the homo-

morphisms (10.1). The left P(n)∗-module action is induced from the Hopf ring: if

v ∈ P(n) j and c ∈ Qk
i , we have vc ∈ Qk

j+i . [[When p = 2, it should be no surprise

after Proposition 6.2 that the correct Hopf ring to consider is not P(n)∗( P(n)
∗

) but

P(n)∗( P(n)
∗

); in this case, we set Q∗
∗ = QP(n)∗( P(n)

∗
). This is the same left P(n)∗-

module as QP(n)∗( P(n)
∗

), but with slightly different multiplication.]]
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By [RW96, Corollary 1.5], both Q∗
∗ and the Hopf ring are free P(n)∗-modules.

These conditions ensure [BJW95, Lemma 4.16(a)] that the dual module to Q∗
∗ is in-

deed the module of all additive unstable operations on P(n)-cohomology, and make

available all the machinery and results on additive operations. We thus identify

(i) The additive unstable operation r : P(n)k(–) → P(n)m(–).

(ii) The primitive cohomology class rιk ∈ P(n)m( P(n)
k

).

(iii) The representing H-map of H-spaces r : P(n)
k
→ P(n)

m
, up to homotopy.

(iv) The P(n)∗-linear functional 〈r, –〉 : Qk
∗ → P(n)∗, of degree k − m.

The action of additive operations on P(n)∗(X) is encoded in coactions

(7.1) ρX : P(n)k(X) → P(n)∗(X) ⊗̂Qk
∗

(one for each k), which are monoidal as k varies [[even if p = 2]].

To construct the generators of Q∗
∗, we use the same test spaces as stably in Sec-

tion 6, together with the circle. We record the values of ψA and ǫA on each generator.

7.1 Cohomology of a Point

The right unit ring homomorphism ηR : P(n)∗ → Q∗
0 is just the coaction ρ for the

one-point space, and so is determined by the elements

(7.2) wk = ηRvk ∈ Q
−2(pk−1)
0 for k ≥ n.

We use ηR to make Q∗
∗ a right P(n)∗-module and the coactions ρX in (7.1) into a

P(n)∗-module homomorphism.

7.2 Cohomology of a Circle

The coaction for the circle S1 defines the suspension element e ∈ Q1
1 by

(7.3) ρu1 = u1 ⊗ e in P(n)∗(S1) ⊗ Q1
∗ = E(u1) ⊗ Q1

∗.

As in [BJW95, Proposition 12.3(d)], ψAe = e ⊗ e and ǫAe = 1.

Then for any j > 0, the coaction for the j-sphere S j is given by

ρu j = u j ⊗ e j in P(n)∗(S j) ⊗ Q j
∗ = E(u j) ⊗ Q j

∗.

Given any additive operation r : P(n)k(–) → P(n)m(–), represented by the map

r : P(n)
k
→ P(n)

m
, where k,m > 0, we use P(n)k(S j) ∼= π j( P(n)

k
) ∼= Σ

kP(n) j−k to

rewrite the induced homomorphism on homotopy groups as

r∗ : Σ
kP(n)∗ ∼= π∗( P(n)

k
)

π∗(r)
−−−−→ π∗( P(n)

m
) ∼= Σ

mP(n)∗.

By [BJW95, Corollary 12.4], this is given on Σ
kv, where v ∈ P(n)i , by the formula

(7.4) r∗(Σkv) = Σ
m〈r, ek+i(ηRv)〉.
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7.3 Complex Orientation

The coaction for CP∞ defines elements b j ∈ Q2
2 j by

(7.5) ρx = b(x) =

∞∑

j=1

x j ⊗ b j in P(n)∗(CP∞) ⊗̂Q2
∗
∼= Q2

∗[[x]],

which is formally identical to (6.6), except that now b1 = e2 by [BJW95, Proposi-

tion 14.4(a)]. As in [BJW95], ψAbi is the coefficient of xi in

ψAb(x) =

∞∑

j=1

b(x) j ⊗ b j in (Q∗
∗ ⊗ Q2

∗)[[x]],

and ǫAb j = 0 for j > 1.

Again [BJW95, Lemma 14.6], we need only the accelerated elements b( j) = bp j for

j ≥ 0, so b(0) = e2. The additive version of (6.11) also looks the same,

(7.6) b([p](x)) = [p]R(b(x)) =

∞∑

i=N

b(x)i+1ηRgi in Q2
∗[[x]].

Definition 7.1 For each k ≥ n, we define the k-th main additive relation (Rk) as the

coefficient of xpk

in (7.6).

In view of (6.9), the first two main relations are simply

(7.7) (Rn) b
pn

(0)wn = vnb(0) in Q2
∗

and

(7.8) (Rn+1) b
pn

(1)wn + b
pn+1

(0) wn+1 = vn+1b(0) + vp
n b(1) in Q2

∗.

We shall find in (10.6) that (Rn) desuspends once to

(7.9) (R ′
n) ebN

(0)wn = vne in Q1
∗.

By (6.10), the general main relation for k ≥ n has the form

(7.10) (Rk)

k∑

i=n

b
pi

(k−i)wi ≡ 0 in Q2
∗ mod V + W2,

where V = (vn, vn+1, vn+2, . . . ) and W = (wn,wn+1,wn+2, . . . ) denote ideals in Q∗
∗.
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7.4 Cohomology of a Lens Space

Our last test space is the lens space skeleton L, whose cohomology is given by (6.12),

assuming p is odd. We already know ρLx = b(x) from (7.5). For u, we find, as

in [BJW95, (16.21)], that

(7.11) ρLu = u⊗e +

n−1∑

i=0

xpi

⊗ a(i) in P(n)∗(L) ⊗ Q1
∗

for certain elements a(i) ∈ Q1
2pi that this equation defines. We deduce that

(7.12) ψAa(k) = a(k) ⊗ e +

k∑

i=0

b
pi

(k−i) ⊗ a(i)

and ǫAa(k) = 0.

[[If p = 2, L = RP2N has different cohomology (6.15), and we replace (7.11) by

(7.13) ρt = t ⊗ e +

n−1∑

i=0

t2i+1

⊗ a(i) in P(t)/(t2N+1) ⊗ Q1
∗.

Nevertheless, (7.12) and ǫAa(k) = 0 remain valid for p = 2. By [Bo], (6.17) destabi-

lizes in the obvious way, to

(7.14) a2
(i) = b(i+1) for 0 ≤ i ≤ n − 1.]]

7.5 More Relations

We shall find in (10.8) that one more suspension factor can be squeezed out of (7.9)

if we first multiply by a(0), to give

(7.15) (R ′ ′
n ) a(0)b

N
(0)wn = vna(0) in Q1

∗.

[[When p = 2, we can multiply this by another a(0) and use (7.14) to obtain the

unexpected formula

(7.16) bN
(0)b(1)wn = vnb(1).

This is not all; if we multiply (Rn+1) (7.8) by bN
(0), we obtain the reduction formula

(7.17) bN+2n+1

(0) wn+1 = v2
nbN

(0)b(1) + vnb2n

(1) + vn+1b2n

(0),

by using (7.16) to simplify one of the terms.]]
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7.6 Summary

We have the additive version of the Hopf algebroid Γ.

Theorem 7.2 The additive unstable operations in P(n)-cohomology are dual to the

P(n)∗-algebra Q∗
∗ = QP(n)∗( P(n)

∗
) [[replaced by QP(n)∗( P(n)

∗
) if p = 2]], which

has the following properties:

(i) Q∗
∗ is the commutative bigraded P(n)∗-algebra generated by the elements

(a) wk ∈ Q
−2(pk−1)
0 for k ≥ n, defined by ηR in (7.2);

(b) e ∈ Q1
1, the suspension element, defined by (7.3);

(c) b( j) ∈ Q2
2p j for j ≥ 0, defined by (7.5);

(d) a(i) ∈ Q1
2pi for 0 ≤ i < n, defined by (7.11) [[replaced by (7.13) if p = 2]];

subject to the relations e2
= b(0), the main relations (Rk) for k > n (see Defini-

tion 7.1), and the two variants (7.9) and (7.15) of (Rn) [[also (7.14) if p = 2]];

(ii) Q∗
∗ is a free left P(n)∗-module;

(iii) multiplication by the elements wk makes Q∗
∗ a right P(n)∗-module;

(iv) the comultiplication ψA : Q∗
∗ → Q∗

∗⊗Q∗
∗ is the homomorphism of algebras and of

P(n)∗-bimodules given on each generator as noted above;

(v) the counit ǫA : Q∗
∗ → P(n)∗ is the P(n)∗-algebra homomorphism given on gener-

ators by ǫAe = 1, ǫAa(i) = 0, ǫAb( j) = 0 for j > 0, ǫAb(0) = 1, and ǫAwk = vk.

Parts (iii)–(v) need no further comment. Part (ii) is included in Theorem 8.2. Part

(i) can be read off from Theorem 11.1. [[For commutativity when p = 2, we refer

to [Bo].]]

We recall [BJW95, (6.3)] the stabilization homomorphism Q(σ) : Qk
∗ → Γ, which

has degree zero. We may use it to recover the structure on Γ in Theorem 6.4 from Q∗
∗

simply by setting e = 1. The coalgebra structure (ψA, ǫA) stabilizes to (ψS, ǫS).

8 Relations for Additive Operations

We noted in Theorem 7.2 that Q∗
∗ is a free P(n)∗-module, which is not at all obvious

from the generators and relations given. In this section, we exhibit a basis of Q∗
∗ and

prove in Lemma 8.3 that it spans the module.

We also establish some direct applications of additive operations.

8.1 The Ravenel–Wilson Basis

Since e2
= b(0) and a2

(i) = 0 trivially if p is odd [[replaced by a2
(i) = b(i+1) if p = 2,

from (7.14)]], any monomial in the listed generators of the P(n)∗-algebra Q∗
∗ can be

written in the abbreviated form

(8.1) eǫaIb JwK
= eǫai0

(0)a
i1

(1) · · · a
in−1

(n−1)b
j0

(0)b
j1

(1)b
j2

(2) · · ·wkn
n wkn+1

n+1wkn+2

n+2 · · · ,
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with multi-indices I = (i0, i1, . . . , in−1), J = ( j0, j1, . . . ), and K = (kn, kn+1, . . . ),

where each ir , also ǫ, is 0 or 1. (We keep the w’s to the right, as a reminder that they

define the right action of P(n)∗ on Q∗
∗.) We introduce the following parameters:

• The b-length is
∑

r jr , the total number of factors of the form b( j);
• The w-length is

∑
r kr, the total number of factors of the form wk.

As with BP in [RW77], it is easier to specify which monomials are not wanted in

forming the basis than those which are. [[For p = 2, the basis is not written out in

detail in [RW96], and contains some surprises.]] There are two variants; we shall need

the second in Sections 10 and 11.

Definition 8.1 We call the monomial (8.1) Q-allowable if it does not have any of

the following forms [[note that (iv) and (v) apply only if p = 2]]:

(i) b
pn

(dn)b
pn+1

(dn+1) · · · b
pq

(dq)wqc, with 0 ≤ dn ≤ dn+1 ≤ · · · ≤ dq, q ≥ n;

(ii) ebN
(0)b

pn+1

(dn+1) · · · b
pq

(dq)wqc, with 0 ≤ dn+1 ≤ · · · ≤ dq, q ≥ n;

(iii) a(0)b
N
(0)b

pn+1

(dn+1) · · · b
pq

(dq)wqc, with 0 ≤ dn+1 ≤ · · · ≤ dq, q ≥ n;

(iv) bN
(0)b(1)b

2n+1

(dn+1) · · · b2q

(dq)wqc, where p = 2, with 0 ≤ dn+1 ≤ · · · ≤ dq, q ≥ n;

(v) bN+2n+1

(0) b2n+2

(dn+2) · · · b2q

(dq)wqc, where p = 2, with 0 ≤ dn+2 ≤ · · · ≤ dq, q ≥ n + 1;

where c is any monomial (c = 1 is permitted) in the generators e, a(i), b( j), and wk.

More generally, we call the monomial allowable if it is not of the form (i) or (ii).

Remark In [RW96], a monomial is called n-allowable (lies in An) if it is not of the

form (i). If it contains a factor e or a(0), it is called n-plus allowable (lies in A+
n ) if it is

not of the form (i), (ii) or (iii).

From [RW96, Theorem 1.3], we have the Ravenel–Wilson basis of Q∗
∗.

Theorem 8.2 (Ravenel–Wilson) The Q-allowable monomials (8.1) form a basis of

the free P(n)∗-module Q∗
∗ = QP(n)∗( P(n)

∗
) [[or QP(n)∗( P(n)

∗
) if p = 2]].

Later in this section, we shall reprove half the theorem.

Lemma 8.3 The relations e2
= b(0), the main relations (Rk) for k > n, [[relation

(7.14) if p = 2,]] and the variants (7.9) and (7.15) of (Rn) imply that the Q-allowable

monomials (8.1) span the P(n)∗-module Q∗
∗ = QP(n)∗( P(n)

∗
) [[or QP(n)∗( P(n)

∗
)

if p = 2]].
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8.2 Generators of Cohomology

Just as in [BJW95, Theorem 20.2], Theorem 1.8 follows directly from the fact that

the additive operations on P(n)−k(–) form the P(n)∗-dual of the free P(n)∗-module

Q−k
∗ , whose generators all lie in groups Q−k

j with j ≥ 0.

We combine the following two lemmas, which correspond to Theorem 20.3 and

Lemma 20.5 of [BJW95]. We study the linear functional ǫA = 〈ι−k, –〉 : Q−k
∗ →

P(n)∗ defined by the identity operation ι−k on P(n)−k(–), which is plainly additive.

Lemma 8.4 Given any integer k > 0, there exist:

(i) a sequence of additive unstable operations ri : P(n)−k(–) → P(n)m(i)(–) with

m(i) ≥ 0,

(ii) a sequence of elements v(i) ∈ P(n)∗ with deg(v(i)) → ∞,

such that in any additively unstable P(n)-cohomology comodule M (e.g., P(n)∗(X) for

any space X) any x ∈ M−k decomposes as the (topological infinite) sum x =
∑

i v(i)rix.

Proof Let {c1, c2, c3, . . . } be the Ravenel–Wilson (or any other) basis of the free

P(n)∗-module Q−k
∗ , with ci ∈ Q−k

m(i). Trivially, m(i) ≥ 0. For fixed x ∈ M−k and any

additive operation r, the linearity of rx in r may be expressed, as in [BJW95, (6.39)],

by the formula

(8.2) rx =

∑

i

〈r, ci〉rix,

where ri denotes the operation dual to ci . We take r = ι−k, put v(i) = 〈ι−k, ci〉, and

note that deg(v(i)) = m(i) + k → ∞.

Remark The coefficients are readily computed: v(i) = ǫAci = vK if the monomial ci

has the form eǫb
j
(0)w

K , and v(i) = 0 otherwise. Thus many terms are zero.

To get the more precise information for Theorem 1.8, we write the space X as the

disjoint union of its components and reduce to the case when X is connected.

Lemma 8.5 Let M be a connected (see [BJW95, Definition 7.14]) additively unstable

P(n)-cohomology algebra (e.g., P(n)∗(X) for any connected space X). Then as a topo-

logical P(n)∗-module, M is generated by 1M ∈ M0 and elements of Mi for i > 0. The

generator 1M is never redundant.

Proof Let L be the submodule generated (topologically) by the elements of all the

Mi for i > 0. By Lemma 8.4, we need only consider x ∈ M0. We choose a basis

{c1, c2, c3, . . . } of Q0
∗ with c1 = 1.

We recall from [BJW95, Definition 7.13] the collapse operation κ j on P(n) j(–)

for any j; since M is connected, on any x ∈ M j it satisfies κ jx = v1M for some

v ∈ P(n)− j . But (8.2) gives κ0x ≡ r1x mod L and also x = ι0x ≡ r1x mod L. Thus

x ≡ κ0x = λ1M mod L for some λ ∈ Fp.

Since κL = 0 and κ01M = 1M , 1M never lies in L.
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8.3 Higher-Order Relations

The proof of Lemma 8.3 resembles that of [BJW95, Theorem 18.16]. The Nakayama

Lemma [Bo95, §15] (which is easier for P(n)∗ than for BP∗, as p = 0) allows us

to work throughout modulo the ideal V ⊂ Q∗
∗. We also work modulo powers of

W. (These ideals were introduced in (7.10), which displays the w-linear terms in the

relation (Rk).)

When q = n and c = 1, we observe that Definition 8.1(i) is the first term in

(Rdn+n), and is thus expressible by (7.10) in terms of Q-allowable monomials mod

V + W 2. Equation (7.9) shows that (R ′
n) takes care of (ii), while (7.15) shows that

(R ′ ′
n ) takes care of (iii). [[If p = 2, we use (7.16) and (7.17) to handle (iv) and (v).]]

Otherwise, the relations (Rk) are not at all transparent. We handle the general dis-

allowed monomial Definition 8.1(i) by eliminating the q − n variables wn,wn+1, . . . ,
wq−1 from the q − n + 1 relations (Rdn+n), (Rdn+1+n+1), . . . , (Rdq+q), expressed in the

form (7.10), to obtain the higher-order derived relation

(8.3) ∆qwq +
∑

r>q

∆rwr ≡ 0 mod V + W 2,

for certain determinants ∆r . Explicitly, for any r ≥ q,

(8.4) ∆r =

∑

π

ǫπb
pπn

(dn+n−πn) · · · b
pπ(q−1)

(dq−1+q−1−π(q−1))b
pπr

(dq+q−πr),

where we sum over all permutations π of {n, . . . , q− 1, r}, write ǫπ for the sign of π,

and adopt the convention that meaningless factors b( j) with j < 0 are taken as 0.

We order the b-monomials lexicographically (b J < bK if and only if there exists

t ≥ 0 such that jr = kr for all r < t , and jt < kt ).

Lemma 8.6 For any r ≥ q, the determinant ∆r in (8.4) has the form

∆r = b
pn

(dn)b
pn+1

(dn+1) · · · b
pq−1

(dq−1)b
pr

(dq+q−r) + higher terms.

Proof The displayed term is the diagonal term with π = id. For any other permu-

tation π, there is a first index t such that πt > t , so that n ≤ t ≤ q − 1 and πk = k

for all k < t . The corresponding term ǫπb
pn

(dn) · · · b
pt−1

(dt−1)b
pπt

(dt +t−πt) · · · in (8.4) is higher,

because dt + t − πt < dt .

Proof of Lemma 8.3 We show that each Q-disallowed monomial in Definition 8.1

is a linear combination mod V of higher monomials with the same w-length, and

monomials of greater w-length, where we partially order all monomials according to

the factor b J (and ignore e, a(i), and wk). Since there are only finitely many monomials

in each bidegree, the result follows.

For Definition 8.1(i), Lemma 8.6 shows how to use (8.3) to express b
pn

(dn) · · · b
pq

(dq)wq

as a linear combination mod V of higher monomials and monomials with w-length
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at least 2, since for r > q, the diagonal term of ∆r is higher than the diagonal term of

∆q. Multiplication by c preserves the ordering.

For (ii), (iii) [[and (iv), if p = 2]], we modify (8.3) by eliminating the variables

wn+1, . . . , wq−1 from the relations (Rdn+1+n+1), . . . , (Rdq+q) to obtain

∆
′
nwn + ∆

′
qwq +

∑

r>q

∆
′
r wr ≡ 0 mod V + W2.

When we multiply this by ebN
(0)c, the first term drops out by (7.9). Lemma 8.6, slightly

modified (or with n replaced by n + 1), shows that (ii) is the lowest of the remain-

ing terms. If we multiply by a(0)b
N
(0)c instead and use (7.15), we obtain (iii). [[For

(iv), we multiply by bN
(0)b(1)c and use (7.16). For (v), we eliminate the variables

wn+2, . . . ,wq−1 from the relations (Rdn+2+n+2), . . . , (Rdq+q) to obtain a higher-order

relation

∆
′′
n wn + ∆

′ ′
n+1wn+1 + ∆

′ ′
q wq +

∑

r>q

∆
′ ′
r wr ≡ 0 mod V + W2.

When we multiply this by bN+2n+1

(0) c, the first two terms drop out by (7.7) and (7.17).

The diagonal term in the determinant ∆
′ ′
q gives (v).]]

8.4 The First Higher-Order Relation

The first relation for a given q, where we eliminate wn, wn+1, . . . ,wq−1 from

(R ′
n), (Rn+1), . . . , (Rq), is particularly important. The additive version for P(n) of

Bendersky’s lemma [Be86, Theorem 6.2] (or see [BJW95, Lemma 18.23]) gives more

precise information than our proof of Lemma 8.3, and follows immediately from

Lemma 12.1.

We recall the ideal Iq = (vn, vn+1, . . . , vq−1) ⊂ P(n)∗ (where In = (0)).

Lemma 8.7 In Q∗
∗ = QP(n)∗( P(n)

∗
) [[replaced by QP(n)∗( P(n)

∗
) if p = 2]], we

have the relation

eg(n,q)−1wq ≡ vqeg(n,q−1)+1 mod IqQ∗
∗ for q ≥ n.

[[If p = 2, this is almost superseded by the relation

eg(n,q)−2wq ≡ vqeg(n,q−1) mod IqQ∗
∗ for q ≥ n + 1.]]

8.5 Primitive Elements

Let M be an unstable P(n)-cohomology comodule (in the sense of [BJW95, Defi-

nition 6.32]). An element x ∈ Mk is called (additively unstably) primitive if the

coaction ρM has the value ρMx = x ⊗ ek on x. Then for any v ∈ P(n)∗,

(8.5) ρM(vx) = x ⊗ ek(ηRv).

Of course, all this requires k ≥ 0, but more is true, as in [BJW95, Lemma 20.8].
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Lemma 8.8 Let x ∈ Mk be a nonzero primitive element of the unstable P(n)-cohomo-

logy comodule M, and assume q ≥ n.

(i) If Iqx = 0 and k satisfies the condition (depending on p and q)

(8.6)
k ≥ g(n, q) − 1 if p is odd or q = n,

k ≥ g(n, q) − 2 if p = 2 and q ≥ n + 1,

then vqx is primitive (possibly zero).

(ii) If k does not satisfy the condition (8.6), then for all i > 0, v i
qx is nonzero and is

not primitive.

Proof For (i) (8.5) gives ρ(vqx) = x ⊗ e kwq. By Lemma 8.7, this is the same as

x ⊗ vqe k−2(pq−1)
= vqx ⊗ e k−2(pq−1), since Iqx = 0.

For (ii), we have ρ(vi
qx) = x ⊗ e kwi

q. Here, ekwi
q is Q-allowable by Definition 8.1

and hence a basis element of Q∗
∗, which shows that vi

qx is not primitive.

Proof of Lemma 1.9 We must have ρx = x ⊗ ek. If m > n, we have vm−1x = 0, and

case (ii) of Lemma 8.8 with q = m − 1 does not apply; hence the lower bound on k.

Conversely, (8.5) specifies the coaction on all of M, and Lemma 8.7 shows it is well

defined.

Proof of Theorem 1.10 We build an increasing sequence

0 = M0 ⊂ M1 ⊂ M2 ⊂ · · · ⊂ M

of subcomodules of M. For each i > 0, just as in the proof of [BJW95, Theorem

20.11], we construct a primitive element xi ∈ M/Mi−1 with Ann(xi) = Imi
for some

mi , using Lemma 8.8 in place of of [BJW95, Lemma 20.8]. We take Mi/Mi−1 ⊂
M/Mi−1 as the P(n)∗-submodule generated by xi . Lemma 1.9 describes Mi/Mi−1.

Because each ki ≥ 0 in Theorem 1.10 and each Mk is a finitely generated

Fp-module, this sequence must terminate after finitely many steps. We deduce that

M is a finitely presented P(n)∗-module.

9 Idempotent Operations

Lemma 9.1 delivers the promised additive idempotent operations θ(m) in P(n)-coho-

mology that we need for Lemma 5.1, which is equivalent to Lemma 3.1. In fact, we

find a large class of θ(m), among which none seems to be preferred. The rest of this

section applies the work in Section 8 to prove Lemma 9.1.

Lemma 9.1 Assume that k ≤ g(n,m) [[replaced by k ≤ g(n,m) − 1 if p = 2]], where

m ≥ n. Then there exists an additive idempotent operation θ(m) on P(n)k(–) having

the following properties:

(i) The image of the operation θ(m) is represented by the space P(n,m)
k
.
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(ii) The map θ(m) : P(n)
k
→ P(n)

k
factors to yield an H-space splitting θ(m) :

P(n,m)
k
→ P(n)

k
of the canonical H-map ρ(m) : P(n)

k
→ P(n,m)

k
.

(iii) For all spaces X, θ(m) naturally embeds P(n,m)∗(X) ⊂ P(n)∗(X) as a summand,

in the sense of abelian groups (but not as P(n)∗-modules).

Remark Exactly as in [BJW95, Remark, p. 817], we can make the splittings θ(m)

compatible as k and m vary if we wish. The decomposition factors of P(n)
k

result-

ing from this approach must of course be the same as in Theorem 1.6, according to

Theorem 1.2(ii), but the injection maps are different, in general. However, we em-

phasize that the splitting theorems as stated in Sections 1 and 5 do not require any

compatibility.

9.1 The ideals Jm

As in [BJW95], the ideal Jm = (vm+1, vm+2, . . . ) ⊂ P(n)∗, introduced in (1.3), gives

rise to an analogous ideal for the right action of P(n)∗ on Q∗
∗.

Definition 9.2 Given any m ≥ n, we define the ideal

Jm = (wm+1,wm+2,wm+3, . . . ) ⊂ Q∗
∗.

We need to know how Jm sits inside Q∗
∗. As in [BJW95], the answer is remarkably

clean, in a certain range.

Lemma 9.3 For k ≤ g(n,m) [[replaced by k ≤ g(n,m) − 1 if p = 2]], Qk
∗ ∩ Jm is the

left P(n)∗-submodule of Qk
∗ spanned by all the Q-allowable monomials (8.1) that lie in

it and contain an explicit factor wq for some q > m.

Remark By Lemma 8.7, vm+1eb
g(n,m)/2
(0) − z lies in Jm, where z ∈ Im+1Q∗

∗, so the result

definitely fails for k = g(n,m) + 1 [[also for k = g(n,m) if p = 2]].

Proof Any monomial that contains wh with h > m visibly lies in Jm. To show the

converse, we fix k and i0 and prove by downward induction on h that for all i ≤ i0, all

elements in Qk
i of the form cwh lie in the indicated P(n)∗-submodule. This statement

is trivial for sufficiently large h (depending on k and i0).

We therefore choose q > m, assume the statement holds for all h > q, and prove

it for h = q. Take cwq ∈ Qk
i , where i ≤ i0, so that c ∈ Q

k+2(pq−1)
i . By Lemma 8.3, we

may reduce to the case where c is a Q-allowable monomial. We note that in Defini-

tion 8.1, the Q-disallowed monomials (i) and (iv) have b -length 1
2
g(n, q), while (ii),

(iii) and (v) have b -length 1
2
g(n, q) − 1.

Case 1: c has no factor e, a(0), or w j . For odd p, the b -length of c is at most

1
2

(
k + 2(pq − 1)

)
≤ 1

2

(
g(n,m) + 2pq − 2

)
< 1

2
g(n, q),
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which makes cwq also Q-allowable, as only rule (i) of Definition 8.1 is relevant. [[If

p = 2, we need to assume k ≤ g(n,m) − 1 to get the stronger bound 1
2
g(n, q) − 1.]]

Case 2: c = ey or c = a(0) y, where y has no factor w j . In this case, the b -length of c is

at most

1
2

(
k − 1 + 2(pq − 1)

)
≤ 1

2

(
g(n,m) + 2pq − 3

)
< 1

2
g(n, q) − 1,

which makes cwq automatically Q-allowable.

Case 3: c = yw j , where j ≤ q. Then cwq remains Q-allowable, by the form of

Definition 8.1.

Case 4: c = yw j , where j > q. By induction, cwq = (ywq)w j lies in the indicated

submodule.

9.2 Linear Functionals

To establish Lemma 9.1, we actually construct the associated P(n)∗-linear functional

〈θ(m), –〉 : Qk
∗ → P(n)∗.

Lemma 9.4 Assume the linear functional 〈θ(m), –〉 : Qk
∗ → P(n)∗ corresponding to

the additive operation θ(m) : P(n)k(–) → P(n)k(–) satisfies the conditions:

〈θ(m),Qk
∗ ∩ Jm〉 = 0,(9.1)

〈θ(m), c〉 ≡ ǫAc mod Jm for all c ∈ Qk
∗,(9.2)

where ǫA : Qk
∗ → P(n)∗ is the augmentation. Then

(i) The homology homomorphism Q(θ(m)∗) : Qk
∗ → Qk

∗ induced by the representing

map θ(m) : P(n)
k
→ P(n)

k
satisfies

(a) Q(θ(m)∗)(Qk
∗ ∩ Jm) = 0,

(b) Q(θ(m)∗) ≡ id : Qk
∗ → Qk

∗ mod Jm.

(ii) Q(θ(m)∗) induces a splitting of the short exact sequence

0 → Qk
∗ ∩ Jm → Qk

∗ → Qk
∗/(Qk

∗ ∩ Jm) → 0

of left P(n)∗-modules.

(iii) The operation θ(m) is idempotent and has the properties listed in Lemma 9.1.

Proof The proof is patterned after [BJW95, Lemma 22.2]. We require the commu-

tative diagram

Qk
∗

ψA

//

q ′

��

Q∗
∗ ⊗ Qk

∗

id ⊗〈θ(m),–〉
//

��

Q∗
∗ ⊗ P(n)∗

λR

//

��

Q∗
∗

q ′

��

Qk
∗/Jm

ψA

// Q∗
∗ ⊗ Qk

∗/Jm

id ⊗ǫA

//

55k
k

k
k

k
k

k
k

Q∗
∗ ⊗ P(n)∗/ Jm

λR

// Q∗
∗/Jm



1192 J. M. Boardman and W. S. Wilson

of P(n)∗-module homomorphisms, where ψA, ǫA and λR denote quotients of ψA,

ǫA, and the right action λR of P(n)∗ on Q∗
∗, Qk

∗/Jm is really Qk
∗/(Qk

∗ ∩ Jm), and

the vertical arrows are the obvious projections. The conditions (9.1) and (9.2) on

〈θ(m), –〉 are exactly what we need to fill in the diagonal.

By [BJW95, Lemma 6.51(c)], the top row gives the homology homomorphism

Q(θ(m)∗), while by [BJW95, (6.31)], the bottom row reduces to the identity homo-

morphism of Qk
∗/Jm. Thus the diagonal provides a splitting we call j ′ : Qk

∗/Jm →
Qk

∗ that satisfies j ′ ◦ q ′
= Q(θ(m)∗) and q ′ ◦ j ′ = id and so yields (i). Part (ii) is

merely a restatement of (i).

It follows by faithfulness that θ(m) is an idempotent operation, so that the im-

age h(–) = θ(m)P(n)k(–) ⊂ P(n)k(–) is an ungraded cohomology theory. By

[Bo95, Theorem 3.6], h(–) is represented (on Ho) by some H-space Y , and the ad-

ditive operations h(–) ⊂ P(n)k(–) and θ(m) : P(n)k(–) → h(–) are represented by

H-maps j : Y → P(n)
k

and q : P(n)
k
→ Y , respectively, that satisfy j ◦ q = θ(m) and

q ◦ j = id.

To finish (iii), we apply the homotopy group functor π∗(–) to obtain homo-

morphisms q∗ : π∗( P(n)
k

) → π∗(Y ) and j∗ : π∗(Y ) → π∗( P(n)
k

) that satisfy

q∗◦ j∗ = id and j∗◦q∗ = θ(m)∗. Recall that π∗( P(n)
k

) ∼= Σ
kP(n)∗. Given v ∈ P(n)i ,

(7.4) evaluates θ(m)∗Σ
kv = Σ

k〈θ(m), ek+i(ηRv)〉. Then (9.1) yields θ(m)∗Σ
kv = 0

if v ∈ Jm, while for any v, (9.2) gives θ(m)∗Σ
kv ≡ Σ

kv mod Jm. It follows that

ρ(m) ◦ j : Y → P(n,m)
k

induces an isomorphism of homotopy groups and is there-

fore a homotopy equivalence. To establish the properties listed in Lemma 9.1, we put

θ(m) = j ◦ g, where g : P(n,m)
k
→ Y is a homotopy inverse to ρ(m) ◦ j.

Proof of Lemma 9.1 Lemma 9.3 makes it obvious that linear functionals 〈θ(m), –〉
exist that satisfy the conditions (9.1) and (9.2), so that Lemma 9.4 applies.

Remark As an explicit example, choose 〈θ(m), –〉 on the Ravenel–Wilson basis as

〈θ(m), c〉 = vK if c has the form eǫb
j
(0)w

K but contains no factor wk with k > m, and

〈θ(m), c〉 = 0 otherwise. To determine 〈θ(m), c〉 for c not in the basis, we must first

express c in terms of the basis.

10 Unstable Operations in P(n)-Cohomology

In this section, we use all unstable operations in P(n)-cohomology to obtain genera-

tors and relations for the Hopf ring P(n)∗( P(n)
∗

), in the style of [BJW95]. The two

multiplications are c∗d = µ∗(c×d) and c ◦d = φ∗(c×d), induced respectively by the

maps µ : P(n)
k
× P(n)

k
→ P(n)

k
and φ : P(n)

k
× P(n)

m
→ P(n)

k+m
that represent

addition and multiplication in P(n)-cohomology, and 1k will denote the ∗-identity

element of P(n)∗( P(n)
k

). [[If p = 2, we use the Hopf ring P(n)∗( P(n)
∗

) instead,

replacing c × d by c × d in both multiplications.]] We still assume that 0 < n <∞.

We deduce the results of Section 7 on additive operations by applying the homo-
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morphism

(10.1) qk : P(n)∗( P(n)
k

) → Qk
∗,

which neglects 1k and decomposables, shifts degrees by −k, and (as k varies) takes
◦-products to products (with a sign, on account of the degree shift). However, the

Hopf ring structure maps ψ and ǫ are unrelated to ψA and ǫA.

Since the Hopf ring is a free P(n)∗-module by [RW96, Corollary 1.5], [BJW95,

Theorem 4.14] allows us to identify the following:

(i) the cohomology operation r : P(n)k(–) → P(n)m(–);

(ii) the cohomology class r(ιk) ∈ P(n)m( P(n)
k

);

(iii) the representing map of spaces r : P(n)
k
→ P(n)

m
, up to homotopy;

(iv) the P(n)∗-linear functional 〈r, –〉 : P(n)∗( P(n)
k

) → P(n)∗ of degree −m [[or

〈r, –〉 : P(n)∗( P(n)
k

) → P(n)∗ if p = 2]].

10.1 Hopf Rings for p = 2

When p = 2, P(n)∗( P(n)
∗

) and P(n)∗( P(n)
∗

) are not Hopf rings in the ordinary

sense (though H∗(P(n)
∗
; F2) is one, and is described in [BW01] and after Theo-

rem 11.3). (A few things are simpler: there are no signs and χ is the identity.) Because

P(n) is not commutative, all Hopf ring axioms that shuffle factors must be modified

to use the commutativity isomorphism TQ of (2.6), which results in extra terms; see

Section 2 or [Bo] for details. Neither multiplication is commutative in the ordinary

sense, nor is ψ cocommutative.

The Hopf ring P(n)∗( P(n)
∗

) is identical to P(n)∗( P(n)
∗

) as a P(n)∗-module.

The choice of multiplication on P(n) does not affect the P(n)∗-module structure on

P(n)∗( P(n)
∗

), nor does it affect the ◦-generators that we construct below. However,

switching to the other good multiplication on P(n) replaces c ◦ d = φ∗(c×d) by

φ∗(c × d) = φ∗T∗(c × d) = φ∗(d×c) = d ◦ c,

which is different in general; and similarly for c ∗ d.

10.2 The Cartan Formulae

Assume first that p is odd. Given a cohomology class x ∈ P(n)k(X), we encode the

action of operations on x by a formula of the form

r(x) =

∑

α

〈r, cα〉xα for all r,

for suitable choices cα ∈ P(n)∗( P(n)
k

) and xα ∈ P(n)∗(X). (Here and elsewhere, we

mean all operations r that have the correct domain degree. The sum may be infinite

if X is not finite-dimensional.) Similarly, given y ∈ P(n)m(X), suppose

r(y) =

∑

β

〈r, dβ〉yβ for all r.
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Then the two Cartan formulae [BJW95, (10.23), (10.36)] are:

r(x + y) =

∑

α

∑

β

(−1)deg(xα) deg(yβ)〈r, cα ∗ dβ〉xαyβ ,

r(xy) =

∑

α

∑

β

(−1)deg(xα) deg(yβ)〈r, cα ◦ dβ〉xαyβ .

We use them repeatedly without further reference.

The Case p = 2 Examination reveals that the proof of the Cartan formulae in

[BJW95] relies on the identity 〈x× y, a×b〉 = ±〈x, a〉〈y, b〉, which is false for p = 2;

we must replace a × b by a× b and use (2.7) instead. When we use the Hopf ring

P(n)∗( P(n)
∗

), both Cartan formulae remain valid as stated.

10.3 Cohomology of a Point

Our first test space is the one-point space. For each v ∈ P(n)q, the Hopf ring element

[v] ∈ P(n)0

(
P(n)

−q

)
[[or P(n)0

(
P(n)

−q

)
if p = 2]] is defined by the identity

(10.2) r(v) = 〈r, [v]〉 in P(n)∗(point) = P(n)∗, for all r.

The properties of these elements were listed in [BJW95, Proposition 11.2]. As

[v + v ′] = [v] ∗ [v ′] and [vv ′] = [v] ◦ [v ′], we are primarily interested in the el-

ements [vk] ∈ P(n)0( P(n)
−2(pk−1)

) for k ≥ n [[or in P(n)0( P(n)
−2(2k−1)

) if p = 2]].

Then (10.1) maps [vk] to wk.

We have the important relation [1]∗p
= [p] = [00] = 10.

10.4 Cohomology of a Circle

Our second test space is the circle S1. The suspension element e = e1 ∈ P(n)1( P(n)
1

)

[[or P(n)1( P(n)
1

) if p = 2]] is defined by the action of operations r on the standard

generator u1 ∈ P(n)1(S1),

(10.3) r(u1) = 〈r, 11〉1S + 〈r, e〉u1 in P(n)∗(S1) = E(u1), for all r.

The properties of e were listed in [BJW95, Proposition 13.7].

10.5 Complex Orientation

Our third test space is CP∞. The Hopf ring elements b j ∈ P(n)2 j( P(n)
2

) [[or

P(n)2 j( P(n)
2

) if p = 2]] for j ≥ 0 are defined by the identity

(10.4) r(x) = 〈r, b(x)〉 =

∞∑

j=0

〈r, b j〉x
j in P(n)∗(CP∞) ∼= P(n)∗[[x]], for all r,
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where b(x) is a convenient formal abbreviation for
∑

j b jx
j . Their properties were

listed in [BJW95, Proposition 15.3]. In particular, b0 = 12 is now nonzero and

b1 = −e ◦ e. Again, the accelerated elements b( j) = bp j ∈ P(n)2p j ( P(n)
2

) [[or in

P(n)2 j+1 ( P(n)
2

) if p = 2]] suffice, as [BJW95, Lemma 15.9] shows how to express the

other b’s inductively in terms of these and the v’s and [v]’s.

Naturality of (10.4) with respect to the p-th power map ζ : CP∞ → CP∞, with

massive use of the Cartan formulae, yields the identity

(10.5) b([p](x)) =

∞

∗
i=N

{b(x)◦i+1
◦ [gi]} in P(n)∗( P(n)

2
)[[x]]

[[or in P(n)∗( P(n)
2

)[[x]] if p = 2]], as in [BJW95, (15.14)]. The lowest power of x

that occurs is still xpn

, apart from the term 12 on each side.

Definition 10.1 For each k ≥ n, we define the k-th main unstable relation (Rk) as

the coefficient of xpk

in (10.5).

The first relation is simply

(Rn) vnb(0) = b
◦pn

(0)
◦ [vn] in P(n)∗( P(n)

2
)

[[or in P(n)∗( P(n)
2

) if p = 2]]. By [RW96, Proposition 2.1(j)], it desuspends once to

(10.6) (R ′
n) vne = e ◦ b◦N

(0) ◦ [vn] in P(n)∗( P(n)
1

)

[[or in P(n)∗( P(n)
1

) if p = 2]]. The second relation is almost as easy, in view of (6.9):

(Rn+1) b
◦pn

(1)
◦ [vn] + b

◦pn+1

(0)
◦[vn+1] = vp

n b(1) + vn+1b(0).

10.6 Cohomology of a Lens Space, for p Odd

Our final test space is the lens space skeleton L, whose cohomology (6.12) has two

generators u and x. As x is a Chern class, (10.4) gives r(x) by naturality. We define

Hopf ring elements ai and ci by the identity

(10.7) r(u) =

N∑

i=0

〈r, ai〉x
i +

N−1∑

i=0

〈r, ci〉uxi in P(n)∗(L), for all r.

Not by coincidence, their formal properties are exactly the same as in the case E =

K(n) of [BJW95]. The formal abbreviation a(x) =
∑

i aix
i is convenient.

Proposition 10.2 For p odd, the Hopf ring elements ai ∈ P(n)2i( P(n)
1

) (for 0 ≤
i < pn), a(i) = api ∈ P(n)2pi ( P(n)

1
) (for 0 ≤ i < n), and ci ∈ P(n)2i+1( P(n)

1
) (for

0 ≤ i ≤ pn − 2) defined by (10.7) have the following properties:
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(i) a0 = 11 and c0 = e;

(ii) ψak =
∑

i+ j=k ai ⊗ a j ;

(iii) ǫai = 0 for all i > 0, in particular, ǫa(i) = 0 for all i;

(iv) ai ∗ a j =
(

i+ j
i

)
ai+ j , provided i + j < pn;

(v) a
∗p
(i) = 0 for 0 ≤ i < n − 1;

(vi) χai = (−1)iai , in particular, χa(i) = −a(i);

(vii) ci = e ∗ ai ;

(viii) a(i) ◦ a( j) = −a( j) ◦ a(i);

(ix) a(i) ◦ a(i) = 0;

(x) for all r, r∗ak is the coefficient of xk in the formal identity

r∗a(x) =

N

∗
i=0

{b(x)◦i
◦[〈r, ai〉]} ∗

N−1

∗
i=0

{a(x)◦b(x)◦i
◦[〈r, ci〉]}

in P(n)∗( P(n)
∗

)[x]/(xpn

).

Proof The statement and proof are identical to [BJW95, Proposition 17.16], except

that we offer a simpler proof of (vi) (and could have also in [BJW95]; compare the

divided power Hopf algebra Γ(a1)).

If m is odd, say m = 2k + 1, we can write the defining equation for χam as

χam +

k∑

i=1

(χam−i ∗ ai + χai ∗ am−i) + am = 0.

By induction, the terms in the sum cancel in pairs, as m− i and i have opposite parity.

If m is even, (iv) decomposes am as a ∗-product, and we again use induction.

We emphasize that (v) is not valid for i = n − 1; instead, [RW96, Proposi-

tion 2.1(i)] shows that the unstable analogue of (7.15) is

(10.8) (R ′ ′
n ) a

∗p
(n−1) = vna(0) − a(0) ◦b◦N

(0) ◦[vn] in P(n)∗( P(n)
1

).

10.7 Cohomology of Real Projective Space, for p = 2

In this case, L = RP2N , with cohomology (6.15). We define Hopf ring elements fi by

the identity

(10.9) r(t) =

2N∑

i=0

〈r, fi〉t
i in P(n)∗(RP2N ) = P(n)∗[t]/(t2N+1), for all r.

Again, we mimic (10.7) by writing ai = f2i , a(i) = a2i = f2i+1 , and ci = f2i+1. We

make the obvious changes to Proposition 10.2 and write f (t) =
∑

i fit
i . We warn

that the analogy is not perfect;ψak acquires many extra terms. Also, (iv) now requires

proof; see [Bo].
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Proposition 10.3 For p = 2, the Hopf ring elements fi ∈ P(n)i( P(n)
1

) (for 0 ≤ i ≤
2N) and a(i) = f2i+1 ∈ P(n)2i+1 ( P(n)

1
) (for 0 ≤ i ≤ n − 1) defined by (10.9) have the

following properties:

(i) f0 = 11 and f1 = e;

(ii) ψ fk =
∑

i+ j=k fi ⊗ f j ;

(iii) ǫ fi = 0 for all i > 0, in particular, ǫa(i) = 0 for all i;

(iv) a(i) ◦ a( j) = a( j) ◦ a(i);

(v) fi ∗ f j =
(

i+ j
i

)
fi+ j , provided i + j ≤ 2N;

(vi) a(i) ∗ a(i) = 0 for 0 ≤ i < n − 1;

(vii) for all r, r∗ fk is the coefficient of tk in the formal identity

r∗ f (t) =

2N

∗
i=0

{ f (t)◦i
◦ [〈r, fi〉]} in P(n)∗( P(n)

∗
)[t]

/
(t2N+1).

Again, for i = n − 1, (vi) is replaced by (10.8), now taken in P(n)∗( P(n)
1

).

Finally, we prove in [Bo] that (7.14) lifts in the obvious way.

Lemma 10.4 In the Hopf ring P(n)∗( P(n)
∗

) for p = 2, we have

(10.10) a(i) ◦ a(i) = b(i+1) for 0 ≤ i ≤ n − 1.

Remark There is a case for writing e here as a(−1), so that the identity e ◦ e = b(0)

becomes a natural extension of (10.10).

11 Structure of the Hopf Ring

In this section, we present two descriptions of the Hopf ring P(n)∗( P(n)
∗

) [[replaced

by P(n)∗( P(n)
∗

) if p = 2]]: a clean concise description in terms of the generators

and relations developed in Section 10, and a concrete computational description that

specifies exactly what the elements of the Hopf ring are. (This relies heavily on the

technical work of Ravenel–Wilson [RW96], and in no way replaces it.)

Theorem 11.1 (Ravenel–Wilson) The Hopf ring P(n)∗( P(n)
∗

) [[which is replaced

by P(n)∗( P(n)
∗

) if p = 2]] over P(n)∗ has the ◦-generators:

(i) [vk] ∈ P(n)0( P(n)
−2(pk−1)

) for k ≥ n, defined by (10.2);

(ii) e ∈ P(n)1( P(n)
1

), defined by (10.3);

(iii) b( j) = bp j ∈ P(n)2p j ( P(n)
2

) for j ≥ 0, defined by (10.4);

(iv) a(i) = api ∈ P(n)2pi ( P(n)
1

) for 0 ≤ i < n, defined by (10.7) [[replaced by (10.9)

if p = 2]];

subject to the relations [1]∗p
= 10, e ◦ e = −b(0), the main relations (Rk) for k > n (see

Definition 10.1) and the two variants (10.6) and (10.8) of (Rn) [[also (10.10) if p = 2]].
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11.1 Allowable Monomials

For our second description of the Hopf ring, we reinterpret the general monomial

(8.1) as the ◦-monomial

(11.1) e◦ǫ
◦ a◦I

◦ b◦ J
◦ [vK ]

= e◦ǫ
◦a

◦i0

(0)
◦a

◦i1

(1)
◦ · · · ◦a

◦in−1

(n−1)
◦b

◦ j0

(0)
◦b

◦ j1

(1)
◦b

◦ j2

(2)
◦ · · · ◦[vn]◦kn ◦[vn+1]◦kn+1 ◦ · · ·

(We adopt the usual convention [RW77] that d◦0
= [1] − 10 for any element d with

ǫd = 0, so that d◦0 ◦ d = d holds. We also set [vk]◦0
= [v0

k] = [1].)

We define it to be allowable or Q-allowable exactly as in Definition 8.1.

A direct description of the allowable monomials is useful, to replace the indirect-

ness of Definition 8.1. As in [RW96], ∆0 denotes the multi-index (1, 0, 0, . . . ).

Proposition 11.2 Any allowable ◦-monomial c in the Hopf ring can be written

uniquely in one of the standard forms

c = a◦I
◦ b◦G+L

◦ [vK ] if c does not involve e;,(11.2a)

c = e ◦ a◦I
◦ b◦G+L−∆0 ◦ [vK ] if c involves e;,(11.2b)

where the multi-index G is defined by

(11.3) b◦G
= b

◦pn

(dn)
◦ b

◦pn+1

(dn+1)
◦ · · · ◦ b

◦pq−1

(dq−1),

L = (l0, l1, l2, . . . ), and the indices satisfy

(i) q ≥ n;

(ii) 0 ≤ dn ≤ dn+1 ≤ · · · ≤ dq−1;

(iii) 0 ≤ lt < pr for all t < dr , for n ≤ r < q;

(iv) 0 ≤ lt < pq for all t;

(v) kr = 0 (i.e., vK contains no factor vr) for all r < q;

(vi) in Case (11.2b), dn = 0 or l0 > 0.

Conversely, any such monomial is allowable.

Proof If the allowable monomial c does not involve e, we choose each dr in turn as

small as possible, so that (iii) holds; moreover, (iii) requires this choice of dr. (If we

cannot even start, q = n, c = a◦I ◦ b◦L ◦ [vK ], and (ii), (iii) and (v) become vacuous.)

We continue as long as possible, until (iv) holds. In view of Definition 8.1(i), c does

not contain [vr] for any r < q, and (v) holds.

If c has the form e ◦ c ′, we note that e ◦ c = b(0) ◦ c ′ remains allowable, and apply

case (11.2a) to it. Here, we need (vi) so that ∆0 can be subtracted off.

Conversely, the monomials (11.2) are easily seen to be allowable.
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11.2 The Algebra Structure

We recall that a simple system of generators of a graded algebra A with multiplication

∗ over a graded ring R of characteristic p is a set of elements z1, z2, z3, . . . such that

the finite products

(11.4) z∗M
= z∗m1

1 ∗ z∗m2

2 ∗ z∗m3

3 ∗ · · · ,

where 0 ≤ mr < p for each zr of even degree and mr = 0 or 1 for each zr of odd

degree, form a set of free R-module generators of A.

The following description is also essentially included in [RW96, Theorems 1.3, 1.4]

[[except that for p = 2, (iv) was not written out explicitly and contains the surprise

(c), below]]. For I 6= (1, 1, . . . , 1), ρ(I) denotes the smallest t such that in−t = 0.

Theorem 11.3 (Ravenel–Wilson) Assume 0 < n < ∞, and let k be any integer.

Then

(i) The Hopf algebra P(n)∗( P(n)
k

) [[or P(n)∗( P(n)
k

) if p = 2]] has as a simple

system of ∗-generators the set of all allowable ◦-monomials (11.1) (that lie in it).

(ii) The Q-allowable ◦-monomials form a minimal set of algebra ∗-generators of

P(n)∗( P(n)
∗

) [[or P(n)∗( P(n)
∗

) if p = 2]].

(iii) For p odd, P(n)∗( P(n)
k

) is the tensor product of the following subalgebras, one

for each Q-allowable ◦-monomial (that lies in it):

(a) TPρ(I)(a◦I ◦ b◦ J ◦ [vK ]) for I 6= (1, 1, . . . , 1);

(b) P(a◦I ◦ b◦ J ◦ [vK ]) for I = (1, 1, . . . , 1);

(c) E(e ◦ a◦I ◦ b◦ J ◦ [vK ]).

(iv) For p = 2, P(n)∗( P(n)
k

) contains the following subalgebras, one for each

Q-allowable ◦-monomial (that lies in it), and is additively (but not multiplica-

tively) isomorphic to their tensor product:

(a) TPρ(I)(e◦ǫ ◦ a◦I ◦ b◦ J ◦ [vK ]) for I 6= (1, 1, . . . , 1);

(b) P(a◦I ◦ b◦ J ◦ [vK ]) for I = (1, 1, . . . , 1);

(c) TPn+1(e ◦ a◦I ◦ b◦ J ◦ [vK ]) for I = (1, 1, . . . , 1).

Remark For p = 2, the quotient algebra

H∗

(
P(n)

k
; F2

)
∼= F2 ⊗P(n)∗ P(n)∗( P(n)

k
)

is the tensor product of the subalgebras listed in (iv), interpreted as F2-algebras.

To complete this description, we need the structure maps ∗, ◦, ψ, ǫ, and χ, which

are all (bi)linear. We know ψ, ǫ, and χ on each generator e, a(i), b( j) and [vk]; then

the Hopf ring laws determine these operations in general.
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11.3 Reduction to Standard Form

We reprove part of Theorem 11.1 by showing that we have enough relations to re-

duce any Hopf ring expression to a P(n)∗-linear combination of ∗-products (11.4) of

allowable ◦-monomials.

For ◦, we need to know how to ◦-multiply any two ◦-monomials (11.1); then the

distributive laws for (a∗b) ◦ c and a ◦ (b∗c) [[modified if p = 2]] take care of general

∗-monomials z∗M as in (11.4). As the ◦-generators ◦-commute up to sign [[even

for p = 2]], all we need is a reduction formula for each non-allowable ◦-monomial

(11.1).

The relation e ◦ e = −b(0) takes care of e◦2. If p is odd, a◦2
(i) = 0 is automatic, by

Proposition 10.2(ix). [[If p = 2, we use a◦2
(i) = b(i+1) instead, from (10.10).]]

For the disallowed monomials (i) and (ii) of Definition 8.1, we use the same re-

lations as in Lemma 8.3, now working modulo ∗-decomposables as well. These use

only the relations (Rk) for k > n and (10.6), which implies (Rn).

For the ∗-product of two ∗-monomials (11.4), we shuffle the ◦-monomials into

the desired order (with the appropriate sign), and deal with excess ∗-powers of any
◦-monomial. [[If p = 2, shuffling introduces extra terms, but the process quickly

terminates, because the ∗-commutator c ∗ d − d ∗ c of any two ◦-monomials is

∗-central; see [Bo] for details.]]

11.4 The Frobenius Operator

To finish the reduction to standard form, we need a formula for the Frobenius oper-

ator Fc = c∗p
= c ∗ c ∗ · · · ∗ c on each allowable ◦-monomial c of even degree [[or any

degree if p = 2]].

We start from the relation [1]∗p
= 10, which we rewrite as F([1] − 10) = 0. We

next reverse the identity [BJW95, (15.13)] as

(11.5) F(c ◦ b◦ J) = (Fc) ◦ b◦0, J,

where 0, J denotes the extended multi-index (0, j0, j1, j2, . . . ). The proof used only

the property ψbk =
∑

i+ j=k bi ⊗ b j . Since ak has the same property when p is odd,

according to Proposition 10.2(ii), we similarly have F(a◦I,0 ◦ c) = a◦0,I ◦ Fc for any

multi-index I = (i0, i1, i2, . . . , in−2). [[For p = 2, Proposition 10.3 delivers the same

result, and also F(e ◦ c) = a(0) ◦ Fc.]] For a(n−1), we rewrite the relation (10.8) as

Fa(n−1) = vna(0)−a(0) ◦b◦N
(0)

◦[vn]. Since applying − ◦ [vK ] preserves ∗-multiplication,

we immediately have F(c ◦ [vK ]) = (Fc) ◦ [vK ].

Combining these, we find the general formulae F(a◦I,0 ◦ b◦ J ◦ [vK ]) = 0 and (with

attention to the shuffles needed and the resulting signs)

(11.6) F(a◦I,1
◦b◦ J

◦[vK ]) = (−1)|I|+1a◦1,I
◦b◦N, J

◦[vnvK]+(−1)|I|vna◦1,I
◦b◦0, J

◦[vK ],

where |I| =
∑

r ir .

[[If p = 2, we need also the formulae involving e, which are

F(e ◦ a◦I,0
◦ b◦ J

◦ [vK ]) = 0,
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(11.7) F(e ◦ a◦I,1
◦ b◦ J

◦ [vK ]) =

a◦0,I
◦b(1) ◦b◦N, J

◦ [vnvK ] + vna◦0,I
◦b(1) ◦b◦0, J

◦ [vK ],

in which we make use of a(0) ◦ a(0) = b(1). For example,

F(e◦a(n−1) ◦b◦N
(0) ) = b◦N+2n+1

(0) ◦ [vn+1] + vnb◦2n

(1) + v2
nb◦N

(0) ◦ b(1) + vn+1b◦2n

(0)

after reduction to standard form, which recovers (7.17).]]

11.5 A Reduction Formula

There is a difficulty with (11.6) which obscures the algebraic structure of the Hopf

ring. Even in the simple case

F(a(n−1) ◦ b◦G) = −a(0) ◦ b◦N,G
◦ [vn] + vna(0) ◦ b◦0,G,

with G as in (11.3), the first term on the right is visibly not allowable (unless q = n,

so that G = 0). What we need is a reduction formula for

b◦0,G
◦ [vn] = b

◦pn

(dn+1)
◦ b

◦pn+1

(dn+1+1)
◦ · · · ◦ b

◦pq−1

(dq−1+1)
◦ [vn],

which is essentially [RW96, Lemma 3.8]. It involves the p-th ◦-power of b◦G,

(b◦G) ◦p
= b◦pG

= b
◦pn+1

(dn)
◦ b

◦pn+2

(dn+1)
◦ · · · ◦ b

◦pq

(dq−1).

Lemma 11.4 Using only the main relations (Rk), the ◦-monomial b◦0,G ◦ [vn], with

G as in (11.3), reduces to an allowable monomial by a formula of the form

b◦0,G
◦ [vn] ≡ (−1)q−nb◦pG

◦ [vq] + · · · ,

where the omitted terms do not involve any a(i) and either (i) have the form b◦ J ◦ [vk]

with b◦ J lexicographically higher than b◦pG (see Section 8), (ii) lie in the ideal V =

(vn, vn+1, . . . ), (iii) have [v]-length at least 2, or (iv) are ∗-decomposable.

We apply this to (11.6) [[also (11.7) if p = 2]].

Corollary 11.5 For the general allowable ◦-monomial (11.2a) without e, we have

(11.8) F(a◦I,1
◦ b◦G+L

◦ [vK ]) ≡ (−1)q−n+|I|+1a◦1,I
◦ {b◦N,L

◦ b◦pG
◦ [vqvK ] + · · · }.

[[If p = 2, we similarly obtain

(11.9) F(e ◦ a◦I,1
◦ b◦G+L−∆0 ◦ [vK ]) ≡ a◦0,I

◦ {b◦N,L
◦ b◦2G

◦ [vqvK] + . . . }

from (11.2b).]]
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The leading term on the right in (11.8) is always allowable: written in standard

form (11.2), it is a◦1,I ◦ b◦G+L ′

◦ [vK ′

], with the same G, vK ′

= vqvK , and b◦L ′

=

b◦N,L ◦ b◦(p−1)G. Careful bookkeeping shows that as the indices vary, it runs through

all the Q-disallowed ◦-monomials of type Definition 8.1(iii) that are nevertheless

allowable, once each. [[Similarly, (11.9) accounts for types (iv) and (v).]]

It follows that F never kills anything unexpected. Now we can read off parts (iii)

and (iv) of Theorem 11.3.

Proof of Lemma 11.4 For n ≤ r ≤ q, we set cr = b
◦pn+1

(dn)
◦ b

◦pn+2

(dn+1)
◦ · · · ◦ b

◦pr

(dr−1), so

that (conventionally) cn = b◦0 and cq = b◦pG.

We show first that cr ◦ [vs] ≡ 0 whenever n ≤ s < r ≤ q, by induction on s.

We ◦-multiply (Rds+s) by cs; by (7.10), the k-th term is cs ◦ b
◦pk

(ds+s−k)
◦ [vk]. If k < s,

this term is neglected by induction. (If s = n, there are no such terms.) If k > s,

we have ds + s − k < ds, and this term is lexicographically higher. If k = s, we have

cs ◦ b
◦ps

(ds)
◦ [vs], which gives cs+1 ◦ [vs] ≡ 0 when we ◦-multiply by b

◦ps+1−ps

(ds)
; hence

cr ◦ [vs] ≡ 0 for any r > s, if we ◦-multiply by further factors.

Then we show that cs ◦ b
◦ps

(ds+1)
◦ [vs] ≡ −cs+1 ◦ [vs+1] for n ≤ s < q, from which

the result follows by induction, starting from cn = b◦0. We ◦-multiply (Rds+s+1) by cs.

The k-th term is cs ◦ b
◦pk

(ds+s+1−k)
◦ [vk], which we have just shown is negligible if k < s.

If k > s + 1, we have ds + s + 1− k < ds, and the term is lexicographically higher. The

two remaining terms, with k = s and k = s + 1, are the desired terms.

12 Effect on Homotopy Groups

Given an unstable operation r : P(n)k(–) → P(n)m(–), where k,m > 0, consider the

homomorphism of homotopy groups r∗ : Σ
kP(n)∗ → Σ

mP(n)∗ (see diagram (3.5))

induced by the representing map r : P(n)
k
→ P(n)

m
. By [BJW95, Lemma 13.9], it is

given on Σ
kv, where v ∈ P(n)i , by the unstable analogue of (7.4), namely

(12.1) r∗Σ
kv = Σ

m〈r, ek+i ◦ [v]〉,

where e2 j = b
◦ j
(0) and e2 j+1 = e ◦ b

◦ j
(0).

We therefore seek more information on the relations in the Hopf ring.

12.1 The First Higher-Order Relation

We need the Hopf ring version for P(n) of Bendersky’s lemma [Be86, Theorem 6.2],

which immediately implies Lemma 8.7.

Lemma 12.1 For q ≥ n, we have in P(n)∗( P(n)
g(n,q−1)+1

) the reduction formula

(12.2) eg(n,q)−1 ◦ [vq] ≡ vqeg(n,q−1)+1 mod IqP(n)∗( P(n)
g(n,q−1)+1

).

[[If p = 2, this is almost superseded by

(12.3) eg(n,q)−2 ◦ [vq] ≡ vqeg(n,q−1) +F(eg(n,q−1)−1 ◦ a(n−1)) mod Iq, for q ≥ n+1.]]
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Proof We establish (12.2) by induction on q. For q = n, it follows immediately

from (10.6). For q > n, we return to the definition of the relation (Rq). We expand

[p](x) =
∑

K λ(K)vK xd(K), summing over multi-indices K, with coefficients λ(K) ∈

Fp and exponents d(K); then if we write b(x) = 12 + b(x), (10.5) becomes

(12.4) 12 + b
(∑

K

λ(K)vK xd(K)
)

=∗
K

{12 + b(x)◦d(K)
◦ [vK ]}∗λ(K).

We apply the suspension eh ◦ −, where h = g(n, q − 1) − 1, which kills 12 and

most ∗-products and thus drastically simplifies (12.4) to

eh ◦ b
(∑

K

λ(K)vK xd(K)
)

=

∑

K

λ(K)eh ◦ b(x)◦d(K)
◦ [vK ].

We take the coefficients of xpq

and work mod Iq. On the left, by (6.10), the only

surviving term in [p](x) is vqxpq

, giving eh ◦ vqb(0), the right side of (12.2). On the

right, eh ◦ [vk] ≡ 0 for all k < q, by induction on q, since h = g(n, q − 1) − 1 ≥

g(n, k) − 1. This leaves only eh ◦ b
◦pq

(0)
◦ [vq], as required.

[[For (12.3), we take h = g(n, q − 1) − 2 instead. We still have enough e’s to kill

[vk] for any k < q − 1, but not [vq−1]. By (6.8), the only terms of interest in [2](x)

are vq−1x2q−1

and vqx2q

. Instead of (12.2), we find

eh ◦ vqb(0) ≡ eh ◦ b◦2q−1

(1) ◦ [vq−1] + eh ◦ b◦2q

(0) ◦ [vq].

The first and third terms appear as the second and first terms in (12.3).

The second term is not allowable; but if q = n + 1, we use (11.7) to write it as

b◦N
(0) ◦ b◦2n

(1) ◦ [vn] ≡ F(e ◦ a(n−1) ◦ b◦N
(0) ).

If q > n + 1, we have eh ◦ [vq−1] ≡ F(eg(n,q−2)−1 ◦ a(n−1)) by induction. Then

eh ◦ b◦2q−1

(1) ◦ [vq−1] ≡ b◦2q−1

(1) ◦ F(eg(n,q−2)−1 ◦ a(n−1)) = F(b◦2q−1

(0) ◦ eg(n,q−2)−1 ◦ a(n−1)),

as required, with the help of (11.5).]]

12.2 Proofs for Section 3

Now we can finish the proofs of two lemmas.

Proof of Lemma 3.4 For (i), by (12.1),

r∗Σ
k(vnv) = Σ

m〈r, ek+q+2N ◦ [vnv]〉 = Σ
m〈r, ek+q+2N ◦ [vn] ◦ [v]〉.

Since k + q > 0, we can use (10.6) to rewrite this as

r∗Σ
k(vnv) = Σ

m〈r, vnek+q ◦ [v]〉 = vnr∗Σ
kv.

Part (ii) is similar, with (12.2) in place of (10.6).
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Lemma 12.2 Let r : P(n)
k
→ P(n)

k
be any map, where k > g(n,m−1), and suppose

that on homotopy, r∗ : Σ
kP(n)∗ → Σ

kP(n)∗ is given on the bottom class by r∗Σ
k1 =

λΣ
k1, where λ ∈ Fp. Then on any monomial v K in the elements vn, vn+1, . . . , vm, r∗

has the form

(12.5) r∗Σ
kvK

= λΣ
kvK +

∑

L>K

cLΣ
kvL

with coefficients cL ∈ Fp, where we order the multi-indices L = (ln, ln+1, . . . ) lexico-

graphically (as in Section 8).

Proof We use induction on the length of vK , starting from K = 0. If (12.5) holds

for Σ
kvK , Lemma 3.4(ii) gives

r∗Σ
k(vqvK ) ≡ λΣ

k(vqvK) +
∑

L>K

cLΣ
k(vqvL) mod Iq.

If we assume (as we may) that vK contains no factors vt with t < q, all monomials in

Iq will be larger lexicographically than vqvK , and we have the result for vqvK .

Proof of Lemma 3.2 Take any map f : P(n,m)
k
→ P(n,m)

k
, where g(n,m − 1) <

k ≤ g(n,m). Suppose f∗Σ
k1 = λΣ

k1. We apply Lemma 12.2 to the composite

P(n)
k

ρ(m)
−−−→ P(n,m)

k

f
−−→ P(n,m)

k

θ(m)
−−−→ P(n)

k

to deduce that

θ(m)∗ f∗Σ
kvK

= λΣ
kvK +

∑

L>K

cLΣ
kvL

for any monomial vK in the generators vn, vn+1, . . . , vm. We apply ρ(m)∗, to see that

f∗Σ
kvK has the same form (possibly with some terms vL deleted). It is now clear that

if λ 6= 0, f∗ is an isomorphism and f is a homotopy equivalence.
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