Agile multiscale decompositions for automatic image registration

James M. Murphy, Omar Navarro Leija (UNLV), Jacqueline Le Moigne (NASA)

Department of Mathematics & Information Initiative @ Duke
Duke University

April 19, 2016
Image registration is the process of aligning two or more images of approximately the same scene, possibly captured with different sensors or at different times.

The registration of multimodal images is a particular challenge; various approaches to the multimodal registration problem have been proposed. Some are based on SIFT and related features, while others attempt to efficiently represent the images to be registered in a common feature space.

For images with very different information content, there is often very little local similarity between the two images. This renders local feature descriptors ineffective for image registration, though robust outlier detection can compensate to some extent.
Wavelets and their Limitations

- Methods that construct global features have been proposed for image registration.

- In particular, using wavelets to isolate important features in images has been successful for automatic image registration.

- However, wavelets are *isotropic*, meaning that they do not emphasize directional features. Indeed, it has been mathematically known for over ten years that wavelets are theoretically suboptimal for a large class of images with edges, i.e. *cartoon-like images*.

- This suggests looking to alternative representation systems for extracting features.
Several directionally sensitive systems have been proposed, beginning in the late 1990s, to address the theoretical suboptimality of wavelets.

Among these are ridgelets (Candés and Donoho), curvelets (Donoho et al), contourlets (Do and Vetterli), and shearlets (Labate, Kutyniok, Weiss, et al).

Curvelets and shearlets are provably near-optimal for representation of certain images with edges, and both are numerically implemented in stable packages.

However, shearlets have the advantage of not needing to interpolate rotations, because shearlets implement directionality via shearing, not rotations.
Use of Shearlets

- In recent work, we proposed to incorporate shearlets in an automatic wavelet registration algorithm, with the hope of utilizing the theoretical properties of shearlets for edges.
- We did so by computing shearlet features for each image pair, then aligning these features via least squares optimization. This registration output was then used as an initial guess for another call to the registration algorithm, this time using wavelet features.

Figure: A 256 × 256 grayscale optical image of a mixed land-cover area in Washington state containing both textural and edge-like features.
Wavelets versus Shearlets

To illustrate the directional character of discrete shearlet algorithms, and its utility for image registration, consider the features produced by a MATLAB discrete wavelet algorithm using the ‘db2’ wavelet, and the shearlet feature algorithm we have developed.

Figure: Wavelet (left) and shearlet (right) features extracted from optical image, emphasizing textural and edge features, respectively.
Towards a More Agile Algorithm

- The order of the shearlets and wavelets (shearlets, then wavelets) was simply because shearlets seemed to have a larger radius of convergence with respect to the initial registration guess, but suffered from lower accuracy in some cases.

- Registering shearlets first provides a good first approximation, which is refined by registering with wavelets second.

- However, we were interested in a more flexible integration of the shearlets and wavelets.

- By utilizing shearlets to further decompose the isotropic wavelet features, we hoped to efficiently capture the most significant features in the image.

- We presently consider an algorithm that applies an anisotropic shearlet features algorithm to the low-pass wavelet features of the images.
Our prototype shearlet+wavelet registration algorithm enjoyed improved robustness over wavelets alone, but was partially coded in C, and partially in MATLAB.

The shearlet features component was based on the MATLAB FFST library, while the wavelet features and optimization components were written in C.

Moreover, the optimization scheme was designed for a non-redundant wavelet transform, not a redundant transform like shearlets.

We present results from the fully integrated in C shearlets+wavelets algorithm.
Summary of Proposed Algorithm (1/2)

1. Input a reference image, \(I^r \), an input image \(I^i \) and an initial registration guess \((\theta_0, T_x^0, T_y^0)\).

2. Apply wavelet features algorithms to \(I^r \) and \(I^i \). This produces a set of wavelet features for both, denoted \(W^r_1, ..., W^r_n \) and \(W^i_1, ..., W^i_n \). Here, \(n \) denotes the number of scales used in the wavelet experiments; for the present experiments, \(n = 4 \).

3. Apply the shearlet features algorithm to \(W^r_1, W^i_1 \) to acquire anisotropic decompositions of these coarse wavelet features. These are denoted \(S^r_1, S^i_1, ..., S^r_k, S^i_k \), respectively. Here, \(k \) denotes the number of scales used in this shearlet decomposition; for the present experiments, \(k = 2 \).

4. Match \(S^r_1 \) with \(S^i_1 \) with a least squares optimization algorithm and initial guess \((\theta_0, T_x^0, T_y^0)\) to get a transformation \(T^S_1 \).

5. Using \(T^S_1 \) as an initial guess, match \(S^r_2 \) with \(S^i_2 \) with least squares to acquire a transformation \(T^S_2 \). Iterate this process by matching \(S^r_j \) with \(S^i_j \) using \(T^S_{j-1} \) as an initial guess, for \(j = 2, ..., k \). At the end of this iterative matching, we acquire a decomposed shearlet-based registration, call it \(T^S = (\theta^S, T^S_x, T^S_y) \).
Using T^S as an initial guess, match W^r_2 with W^i_2 with least squares to acquire a transformation T^W_1. Using T^W_1 as an initial guess, match W^r_3 with W^i_3 with least squares to acquire a transformation T^W_2. Iterate this process by matching W^r_{j+1} with W^i_{j+1} using T^W_{j-1} as an initial guess, for $j = 2, \ldots, n$. At the end of this iterative matching, we acquire the final hybrid registration, call it $T^H = (\theta^H, T^H_x, T^H_y)$.

Output T^H.

Compared to our original shearlets+wavelets algorithm, in which shearlet and wavelet features were computed on the full image, shearlet features are here computed only for the coarsest wavelet feature. This improves speed, since the wavelet transform is non-redundant i.e. decimating, but also incorporates less information.
Outline of Experiments

- We consider experiments with the algorithm just described, denoted *shearlet+wavelet with decomposition*. This is compared to wavelets-only and the previously studied shearlets+wavelets algorithm, with improved optimization for shearlets.

- To evaluate the algorithm, different choices of initial guess are compared with respect to output RMSE. We have seen in previous work that using shearlets+wavelets allows for a poorer initial guess, while retaining acceptable RMSE, thus improving algorithm robustness.

- While our optimization procedure works for general affine transformations, we consider the simpler case of searching for transformations that consist only of translations and rotations.

- Moreover, we couple rotation and translations together for the initial guess, to make the parameter space one-dimensional, and thus easier to visualize.
Figure: 512 × 512 lidar shaded relief images of Mossy Rock without (left) and with (right) synthetic radiometric distortion. The images have been converted to grayscale.
Figure: Comparison of algorithms for Mossy Rock synthetically warped experiments (from left to right: splines, Simoncelli band-pass, Simoncelli low-pass); blue is wavelets, yellow is hybrid shearlets+wavelets with decomposition, and red is shearlets+wavelets without decomposition.
Figure: Lidar DEM (left), and aerial photograph (right) for a scene in WA state. The shaded relief image, illuminated in the same direction as in the optical image, depicts similar patterns of textures and edges. All images are 256×256. The images have been converted to grayscale.
Figure: Comparison of algorithms for WA lidar-to-optical experiments (from left to right: splines, Simoncelli band-pass, Simoncelli low-pass); blue is wavelets, yellow is hybrid shearlets+wavelets with decomposition, and red is shearlets+wavelets without decomposition.
Conclusions

- The experiments affirm the effectiveness of using shearlets for image registration.

- In concert with wavelets, improved robustness can generally be achieved, with little cost inaccuracy.

- The impact of decomposing the low-pass wavelet features with shearlets appears, however, mixed.

- This is perhaps due to the fact that the coarsest wavelet feature has undergone substantial decimation, thus having insufficient information content for registration.
Future Work

- It remains of interest to consider the impact of decomposing high-pass wavelet features, instead of the low-pass features.

- Recent theoretical developments with anisotropic Gabor theory suggests that frames of directional Gabor systems exist.

- Early numerical experiments indicate these frames can perform well for textures, which is a weakness of shearlets.

- The use of such systems could improve image registration of highly textural images.

