
1. The big picture: why study maps f : D ⊂ Rn → Rm ?

Although in this course we will focus on the calculus of functions of two and three

variables (i.e we study f : Rn → R for n=2,3), along the way we will need to under-

stand more general maps f : Rn → Rm. Let me try to explain a little why this is the

case and some of the most important examples.

Take for example the case n = 1 and m = 2 , 3. Then we are studying ~f(t),

a ≤ t ≤ b and the image of f is a curve in R2 or R3. For general m, the image is a

curve in Rm. We will say that the image curve is regular if ~f ′(t) 6= 0. This means

that the image curve always has a well defined tangent direction.

Now let n = 2 and m = 3 and ~X(u, v) : D ⊂ R2 → R3. We can think of the image
~X(D) as a “surface patch” (i.e a piece of a surface in R3) and by choosing different

patches we are “parametrizing” (representing by good coordinates pieces of a larger

surface. For example we may think of the unit sphere S2 in R3 which is the nicest

example of a compact surface in R3 without boundary. Then as early cartographers

understood, it is topologically impossible to represent S2 by a single patch. We will

also want ~X to be continuously differentiable, i.e the partial derivatives ~Xu and ~Xv

exist and are continuous. We say that the patch ~X(D) is regular if ~Xu and ~Xv are

linearly independent vectors in R3. This condition means that the surface patch has a

well defined tangent plane that changes continuously as the parameters (u, v) changes

continuously.

One of the main interpretations of the case n = m = 2 is that of a vector field in

R2 and of n = m = 3 is a vector field in R3. We visualize a vector field as a vector

(arrow) emanating from the point where it is defined. For example, we have already

seen the vector field ~F (x, y) = −yî + xĵ which is associated with a rotation. Vector

fields in R3 may represents forces or velocity vectors of a steady fluid, or many other
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fields of physical or geometric interest.

Another reason to study the case n = m = 2 or n = m = 3 is to introduce a change

of coordinates that better suits the geometry of the problem we are studying. For

example we may want to introduce polar coordinates x = r cos θ, y = r sin θ. Then
~f(r, θ) =< r cos θ, r sin θ > is the polar coordinate mapping. For example let D be

the rectangle 0 ≤ r ≤ R, 0 ≤ θ ≤ π
4
. Then the image ~f(D) is a sector of the disk of

radius R of angle π
4

in the first quadrant.

When n = m = 3 we may want to introduce cylindrical coordinates x = r cos θ, y =

r sin θ , z = z which are analogous to the polar coordinates in the plane. Then we

may define a cylindrical box B = {(r, θ, z) : 0 ≤ r ≤ R, 0 ≤ θ1 ≤ θ ≤ θ2 ≤ 2π, z1 ≤
z ≤ z2} and the cylindrical coordinate mapping

~f(r, θ, z) =< r cos θ, r sin θ, z >

with image ~f(B) is the portion of the standard cylinder of radius R in R3 whose

cylindrical coordinates satisfy 0 ≤ r ≤ R, 0 ≤ θ1 ≤ θ ≤ θ2 ≤ 2π, z1 ≤ z ≤ z2}. In

other words, it is that part of the cylinder of radius R that is contained between the

planes z = z1 and z = z2 and lying in the sector defined by 0 ≤ r, 0 ≤ θ1 ≤ θ ≤ θ2
(this is a wedge shaped region).

Another interesting geometry (again n = m = 3) is that defined by spherical

coordinates

x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cosφ .

Here ρ ≥ 0 is | ~X| where ~X =< x, y, z > is the position vector, 0 ≤ φ ≤ π is the

angle between ~X and k̂ and 0 ≤ θ < 2π is the usual polar angle of (x, y) in the

plane z = 0. These coordinates are closely related to longitude and latitude with the

difference being that the latitude angle φ′ = φ− π
2

varies between −π
2

and π
2

(i.e φ is

the “co-latitude”.

We will study all of these changes of coordinates in more detail when we study

double and triple integrals. In particular we need to understand how area and vol-

ume change infinitesimally, that is up to first order. That is where the derivative map

D~f comes in as the linear map which gives the first order Taylor approximation to
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the “nonlinear map” ~f . We will define what we mean by D~f in another installment

of these notes. Instead we now discuss in more detail what we mean by a linear

transformation and how such a linear transformation changes volume.

2. Linear transformations

We say that a mapping T : Rn → Rm is a linear mapping if

T (a~u+ b~v) = aT (~u) + bT (~v) ,

for all scalars a and b. Necessarily, T (~0) = ~0.

Example 2.1. Fix standard coordinate systems in Rn and Rm respectively and rep-

resent vectors in these spaces by column vectors. Let T ( ~X) = A ~X where A is an mxn

matrix and A ~X is matrix multiplication, i.e the ith component of the column vector

A ~X is (A ~X)i =
∑n

j=1 aijxj, 1 ≤ i ≤ m where x1, . . . , xn are the components of ~X.

Because matrix multipication as defined above is linear, it is easily verified that T is

linear.

Note however that it is not necessary to choose coordinate systems in the spaces

Rn and Rm to define linear mappings.

Example 2.2. Let {~v1, . . . , ~vm} be m vectors in Rn. Define

T ( ~X) = ( ~X · ~v1, . . . , ~X · ~vm) .

(Here we think of Rn and Rm as ordered n and m tuple respectively and define the

dot product in the usual way). Then because dot product is a linear operation, T is

linear.

However, once we choose arbitrary bases ~v1, . . . , ~vn for Rn and ~w1, . . . , ~wm for Rm

(not necessarily orthonormal), then any ~v ∈ Rn has a unique representation

~v = c1~v1 + . . .+ cn~vn

and

T (~v) = T (c1~v1 + . . .+ cn~vn) = c1T (~v1) + . . . cnT (~vn) .

Therefore T is uniquely determined by T (~v1), . . . , T (~vn) and

T (~vj) = a1j ~w1 + . . .+ amj ~wm .
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Thus T is uniquely determined by the mxn matrix (aij), 1 ≤ i ≤ m, 1 ≤ j ≤ n and

T ( ~X) = A ~X.

3. Change of volume for linear maps from Rn to Rn, n = 2, 3.

Now let ~v and ~w be linearly independent vectors in R3 and consider the parallelo-

gram P = {s~v + t~w, 0 ≤ s ≤ 1, 0 ≤ t ≤ 1} that they span. Suppose that TR3 → R3

is a linear transformation. Then since T (s~v + t~w) = sT (~v) + tT (~w), the image T (P )

is again a parallelogram in R3 and its area is |T (~v)× T (~w)|.

Example 3.1. Given vectors ~A =< a1, a2 > and ~B =< b1, b2 > in the plane, there

exists a unique linear map L : R2 → R2 such that L(̂i) = ~A and L(ĵ) = ~B, with

associated matrix (
a1 a2
b1 b2

)
.

We say det(L) = det( ~A, ~B) = a1b2−a2b1 is the determinant of the associated matrix.

Then if S is the unit square spanned by î and ĵ, and if P is the parallelogram spanned

by ~A and ~B, then L(S) = P and

Area(P) = | detL| .

Now let T : R2 → R2 be another linear map. Then the composition L1 = T ◦ L is

again a linear map (check this) and

T (P ) = T (L(S)) = L1(S) .

Moreover,

Area T(P) = | detL1| = | detT detL| = | detL|Area(P)

since the matrix representing L1 is the composition (matrix multiplication) of the

matrix representing T and L and the determinant is multiplicative under composi-

tion.

Now consider a parallelpiped P in R3 spanned by linearly independent vectors
~A, ~B, ~C. Then we have seen that the volume of P is

Vol(P) = | det (~C, ~A, ~B)| = | det ( ~A, ~B, ~C) = | ~A× ~B · ~C| .
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Now let L : R3 → R3 be a linear map and agin define detL to be the determinant of

the associated matrix. Now let S denote the unit cube spanned by the units vectors

î, ĵ, k̂ and let L be the unique linear map defined by

L(̂i) = ~A, L(ĵ) = ~B, L(k̂) = ~C .

Then L(S) = P and Vol(P) = detL. Moreover,

Theorem 3.2. Vol(T(P) = | detT |Vol(P).

Later on, we will define D~f , the derivative of a nonlinear map and show that it

is a linear map T. This will allow us to define the associated matrix to D~f , namely

the Jacobian matrix and show that its determinant gives the infinitesimal volume

distortion.


