
Math 202 Final exam study guide.

Know the definitions of dot product and its use in finding the projection of one

vector onto another. Know how to find the cross product of two vectors (and the

right hand rule ) including its use in finding area and volume.

1. The directed vector going from P = (p1, p2, p3) to Q = (p1, p2, p3) is

~PQ =< q1 − p1, q2 − p2, q3 = p3 > .

2. Parametric equation of the line through ~P =< p1, p2, p3 > in the direction of a

vector ~v =< v1, v2, v3 >:

~l(t) =< x(t), y(t), z(t)) = ~P + t~v =< p1 + tv1, p2 + tv2, p3 + tv3 > .

Example: Find the parametric equation of the line through the points P=(1,-2,3)

and Q=(-1,1,2).

Here we can take ~v = ~PQ =< −2, 3,−1 > so ~l(t) =< 1,−2, 3 > +t < −2, 3,−1 >=<

1− 2t,−2 + 3t, 3− t >. Note that when t=0 we are at P and when t=1 we are at Q.

If we wanted to orient the line starting at Q and toward P, I would have taken ~v = ~QP .

and started at Q.

3. The equation of the plane passing through ~P with normal direction ~N is given by

( ~X − ~P ) · ~N = 0 .

Here ~X =< x, y, z > is the position vector of points on the plane and if
~P =< p1, p2, p3 >, ~N =< a, b, c >, the equation of the plane is

a(x− p1) + b(y − p2) + c(z − p3) = 0 .

Example: Find the equation of the plane passing through the points P=(0,0,0),

Q=(1,1,1) and R=(0,-2,3). Then the vectors ~PQ = ~Q =< 1, 1, 1 > and ~PR = ~R =<

0,−2, 3 > lie in the plane (this means they are parallel to the plane or ~Q · ~N = ~R · ~N =
1
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0. To find ~N , we can use the cross product:

~N = ~Q× ~R =< 5,−3,−2 > ,

so the equation of the plane is 5x− 3y − 2z = 0.

Note also that the area of the triangle PQR is 1
2
| ~N | =

√
38
2

.

Suppose we are given a point such as T=(-1,2,4) that is not on the plane and we

wanted to find the distance to this plane and the point U on the plane closest to T

(this is the where the line through T in the direction of ~N intersects the plane). This

line is ~l(t) = ~T + t ~N =< −1 + 5t, 2− 3t, 4− 2t > ; to find where it meets the plane

we solve the linear equation

5(−1 + 5t)− 3(2− 3t)− 2(4− 2t) = 0 or − 19 + 38t = 0, t =
1

2
, U = (

3

2
,
1

2
, 3) .

Note that the distance from T to U is |t ~N | = |t|| ~N | = 1
2

√
38.

If we just wanted to find the distance fro T to the plane, we would use distance

= |
~T · ~N |
| ~N |

= |−5−6−8|√
38

= 19√
38

=
√
38
2

.

4. The directional derivative of a function f( ~X) = f(x, y, z) at ~X0 in the direction

of a vector ~v is by definition D~vf( ~X0) = limh→0
f( ~X0+h~v)−f( ~X0)

h
. Here we allow ~v to

be of arbitrary length. However sometimes we will restrict ~v to be a unit vector, for

example when we want to know the direction of fastest increase or decrease of f at
~X0. The directional derivative is easily seen to be equal to d

dt
f(~l(t))|t=0 where ~l(t)

is the line through ~X0 in the direction of ~v. When ~v = î, ĵ, k̂ respectively, then we

obtain the partial derivative fx, fy, fz respectively. The gradient of f is the vector

∇f(x, y, z) =< fx, fy, fz >. The function f(x,y,z) is differentiable at (x0, y0, z0) means

that near ~X0, f(x,y,z) is well approximated by the linear approximation, that is ,

f( ~X0 + ~h) ≈ f( ~X0) +∇f( ~X0) · ~h .

Example: Let f(x, y) = x2y2−x and let (x0, y0) = (2, 1). Then fx = 2xy2−1, fy =

2x2y, ∇f(2, 1) =< 3, 8 >. The tangent plane to the graph z=f(x,y) at (2,1, 2) is

z = 2 + 3(x − 2) + 8(y − 1) which represents the linear approximation to f(x,y) at

(2,1). For example the linear approximation of f(1.9, 1.1) is 2+3(-.1)+8(.1)=2.5.
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A special case of the Chain rule tells us that

D~vf( ~X0) = ∇f( ~X0) · ~v .

More generally, if ~c(t) is a differentiable curve in R3, then

d

dt
f(~c(t)) = ∇f(~c(t)) · ~c′(t) .

In particular if ~c(0) = ~X0, ~c
′(0) = ~v, then

d

dt
f(~c(t)) = ∇f( ~X0) · ~v = D~vf( ~X0) .

Example: Let f(x, y) = e1−x
2−2y2 . At the point (1,0), ∇f =< −2, 0 > and if

~v =< −1, 1 >, D~vf(1, 0) =< −2, 0 > · < −1, 1 >= 2. The rate of change of f at

(1,0) in the direction of the unit vector in the direction < 1,−1 > is 2√
2

=
√

2. This

represents the “slope” of f in that direction. The direction (unit) in which f increases

the fastest is ∇f(1,0)
|∇f(1,0)| = <−2,0>

2
=< −1, 0 >. If ~c(t) =< 1 + t + sinπt, 2t > then

~c(0) =< 1, 0), ~c′(0) =< 1 + π, 2 > and

d

dt
f(~c(t))|t=0 = ∇f(1, 0) · ~c′(0) =< −2, 0 > · < 1 + π, 2 >= −2(1 + π) .

Now if ~F (x, y, z) =< F 1(x, y, z), F 2(x, y, z).F 3(x, y, z) is a vector function from R3

to R3, then its derivative DF at a point ~X0 is a linear map, i.e is represented as a

3x3 matrix called the Jacobian matrix: F 1
x F 1

y F 1
z

F 2
x F 2

y F 2
z

F 3
x F 3

y F 3
z

 ( ~X0) .

We can interpret the Jacobian matrix D~F ( ~X0) as follows: given a vector ~v, let ~c(t)

be any curve in R3 passing through ~X0 with velocity vector ~v, i.e ~c(0) = ~X0, ~c
′(0) = ~v.

Then ~F (~c(t)) is a new curve in R3 passing through ~F ( ~X0) with tangent vector

D~vF ( ~X0 = D~F ( ~X0)(~v) which we interpret as the matrix multiplication of the 3x3

Jacobian matrix and the 3x1 column vector ~v.

A similar statement applies to any vector function ~F : Rn → Rm with m and n

being 2 or 3.
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Example: Let ~F (x, y, z) =< x2−y+z, 2y−3z, x+z > and let v̂ = 1√
6
< 2,−1, 1 >

be a unit vector. To calculate Dv̂
~F (1, 1, 1), we first calculate the Jacobian matrix

D~F (1, 1, 1):  2x −1 1
0 2 −3
1 0 1

 (1, 1, 1) =

 2 −1 1
0 2 −3
1 0 1

 .

Then Dv̂
~F (1, 1, 1) =

 2 −1 1
0 2 −3
1 0 1

 1√
6

 2
−1

1

 = 1√
6

 6
−5

3

.

One can also compute Dv̂
~F (1, 1, 1) =< Dv̂F

1, Dv̂F
2, Dv̂F

3 > (1, 1, 1), that is compo-

nent by component.

5. General Chain Rule: Let ~G : Rn → Rp and ~F : Rp → Rm. Then the composition
~h = ~F ◦ ~G : Rn → Rm and

D~h = DF (~G)D~G .

This last product is interpreted as matrix multiplication of a mxp matrix with a pxn

matrix resulting in a mxn matrix.

Example: Let f(x, y, z) = xyz, ~g(u, v) =< u2v, uv2, u2 +v2 > (n = 2, p = 3, m =

1). Then h(u, v) = f(~g(u, v)) maps R2 → R. We compute ∇h as follows:

Df =< fx, fy, fz >, D~g =

 g1u g1v
g2u g2v
g3u g3v

 .

Then,

Dh =< hu, hv >=< fx, fy, fz >

 g1u g1v
g2u g2v
g3u g3v

 =< ∇f · ~gu,∇f · ~gv > .

∇f =< yz, xz, xy >, ~gu =< 2uv, v2, 2u >, ~gv =< u2, 2uv, 2v > .

At (u, v) = (1, 2),

~g(1, 2) =< 2, 4, 5 >, ∇f ◦ ~g =< 20, 10, 8 >, ~gu =< 4, 4, 2 >, ~gv =< 1, 4, 4 > .

Therefore, ∇h =<< 20, 10, 8 > · < 4, 4, 2 >,< 20, 10, 8 > · < 1, 4, 4 >>=<

136, 92 >.
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6. We say a function of two or three variables is continuously differentiable of

order k (we write f ∈ Ck) if f and all partial derivatives up to order k exist and

are continuous. The important result is that for k ≥ 2 the mixed derivatives are

independent of the order. So for example if f(x, y) ∈ C2 then fxy = fyx. Similarly if

f(x, y, z) ∈ C2, then fxy = fyx, fxz = fzx and fyz = fzy. Similarly if f(x, y, z) ∈ C4,

then fxxyz = fxyzx etc.

This fact is used to derive the necessary condition ∇× ~F (x, y, z) = ~0 for the vector

field ~F (x, y, z) to be conservative. For if ~F = ∇φ, then

∇× ~F = ∇×∇φ =

∣∣∣∣∣∣
i j k
∂x ∂y ∂z
φx φy φz

∣∣∣∣∣∣ =< φzy − φyz, φxz − φzx, φyx − φxy >= ~0 .

Another important use of higher order partial derivatives is the Taylor expansion.

For example if f(x, y, z) ∈ C2 in a neighborhood of (x0, y0, z0), then the Taylor

expansion of f of order 2 at ~X0 is given by

f( ~X0 + ~h) = f( ~X0) +∇f( ~X0) · ~h+
1

2

3∑
i,j=1

∂2f

∂xi∂xj
( ~X0)hihj + E( ~X0,~h) ,

where E( ~X0,~h)

|~h|2
→ 0 as ~h → ~0. Here ~h =< h1, h2, h3 > is the vector increment and

must be small.

For a function f(x, y) the Taylor expansion is considerably simpler:

f(x0 + h1, y0 + h2) = f(x0, y0) + fx(x0, y0)h1 + fy(x0, y0)h2

+
1

2
[fxx(x0, y0)h

2
1 + 2fxy(x0, y0)h1h2 + fyy(x0, y0)h

2
2) + E .

Example: Let f(x, y) be a C2 function with the property that (2,8) is a critical

point of f, f(−2, 8) = −3 and the Hessian matrix of f at (2,8) is

D2f(2, 8) =

(
fxx fxy
fxy fyy

)
(2, 8) =

(
3 −1
1 −2

)
.

Then the second order Taylor polynomial of f at (2,8) is

−3 +
1

2
[−3h21 + 2h1h2 − 2h22] .
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Sometimes we write h1 = x− x0, h2 = y − y0 so we get a second order polynomial

in x,y as an approximation to f(x, y) for (x,y) near (x0, y0):

f(x, y) ≈ −3 +
1

2
[−3(x− 2)2 + 2(x− 2)(y − 8)− 2(y − 8)2] .

In this case at the critical point (2,8), the second derivative test says that (2,8) is

a relative maximum.

7. Implicit surfaces g(x, y, z) = 0 and the Implicit function theorem.

Let g(x, y, z) be a differentiable function of three variables; the the level set

S = {(x, y, z) : g(x, y, z) = 0}

implicitly defines a surface S in R3 , possibly with singularities. The implicit function

theorem states that if ∇g( ~X0) 6= ~0, then S is a regular surface in some neighborhood

of ~X0. In particular if gz( ~X0) 6= ~0 then S is locally a graph, i.e the implicit equation

g(x, y, z) = 0 locally has a unique solution z = z(x, y) with z(x0.y0) = z0. Therefore

z(x, y) satisfies g(x, y, z(x, y)) = 0 for (x,y) near (x0.y0). We can differentiate this

identity with respect to x and y:

gx + gzzx = 0, gy + gzzy = 0 .

This leads to

zx = −gx(x, y, z(x, y))

gz(x, y, z(x, y))
, zy = −gy(x, y, z(x, y))

gz(x, y, z(x, y))
‘.

Example: Show that g = xy+z+3xz5−4 = 0 is solvable for z as a function of (x,y)

near (1,0,1) and compute zx, zy at (1,0). We compute gz(1, 0, 1) = 1 + 15 = 16 > 0

so the IFT says that we can solve for z = z(x, y) near the given point. By the above

formulas,

zx = − 3

16
, zy = − 1

16
at (1,0) .

Now let ~c(t) be a differentiable curve that lies on S, that g(~c(t)) = 0 with ~c(0) = ~X0

and ~c′(0) = ~v. Assume ∇g( ~X)) 6= ~0. Then by the Chain Rule,

0 =
d

dt
g(~c(t))|t=0 = ∇g( ~X0) · ~v .

Since ~c(t) lies on S and S is regular near ~X0, the vector ~v lies in the tangent plane to

S at ~X0. (The tangent plane to a regular surface S at ~X0 is the set of tangent vectors
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to regular curves on S at ~X0.) Since ∇g( ~X0) ·~v = 0 for all such tangent vectors ~v, we

conclude that ∇g( ~X0) is the nornal vector to the surface S at ~X0.

Example: Find the outward unit normal to the surface x2+y2+2z2 = 4 at (1,1,1).

Here g(x, y, z) = x2 + y2 + 2z2 − 4 and ∇g(1, 1, 1) =< 2, 2, 4 >. There the outward

unit normal is N̂ = 1√
24
< 2, 2, 4 >.

8. The method of Lagrange multipliers.

Consider the problem of finding the extremum of a function f(x, y, z) subject to

a constraint g(x, y, z) = 0. A point ~X0 which is a possible extremum (max or min)

no longer need satisfy the condition ∇f( ~X0) = 0. Instead, the method of Lagrange

multipliers says that if ∇g( ~X0) 6= 0, there is a number λ such that

∇f( ~X0) = λ∇g( ~X0), and g( ~X0)) = 0 .

To see this we let ~c(t) be a differentiable curve such that g(~c(t)) = 0 with ~c(0) = ~X0.

Then f(~c(t) has a min or max at t = 0 so

d

dt
f(~c(t)|t=0 = 0, or ∇f( ~X0) · ~c′(0) = 0 .

In other words, ∇f( ~X0) is normal to the level set g(x, y, z) = 0 at ~X0. But since

∇g( ~X0) is the nornal vector at ~X0 we must have ∇f( ~X0) = λ∇g( ~X0) (these vectors

are parallel).

Example: Find the absolute max and min of f(x, y, z) = x + y − z on the ball

x2 + y2 + z2 ≤ 1.

Since∇f =< 1, 1,−1 >6= ~0, there are critical points inside the ball . We use Lagrange

multipliers on the boundary of the ball. That is we look for the max and min of f

subject to the constraint g(x, y, z) = x2 + y62 + z2 − 1 = 0. Therefore,

∇f =< 1, 1,−1 >= λ∇g = λ < 2x, 2y, 2z > .

This implies (2λx)2 + (2λy)2 + (2λz)2 = 1. Since x2 + y2 + z2 = 1, this gives 4λ2 = 3

so λ = ±
√
3
2

Therefore we have two extremum points:

P =<
1√
3
,

1√
3
,− 1√

3
>, f(P ) =

√
3, absolute max
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Q =< − 1√
3
,− 1√

3
,

1√
3
>, f(Q) = −

√
3, absolute min .


