
Kepler’s Laws

The German astronomer Kepler discovered three fundamental laws
governing planetary motion. Kepler’s first law is that planetary mo-
tion is ellipitcal with the sun at one focus (the motion is planar). His
second law is that equal areas of the position vector from the sun to
the planet are swept out in equal times. Kepler’s third law is that the
period T of the motion satisfies T 2 = Ka3 for a universal constant K
where a is the major semi axis of the ellipse. (Surprisingly, T is in-
dependent of the minor semi axis b of the ellipse). Kepler’s laws were
based on the careful data of his mentor Tycho Brahe and represent a
profound discovery. However the explanation for these laws provided
by Newtonian mechanics is one of the great achievements of science.

Let’s start with the second law which is easiest to explain using
vector calculus. The change in position is ∆~r = ~r′(t)∆t so the change
in area swept out in time ∆t is

∆A =
1

2
|~r(t)× ~r′(t)|∆t

since to first order this region is a triangle with sides ~r(t), ~r(t+∆t), ∆r.
Note however that the motion lies in a plane which means that both
~r(t) and ~r′(t) lie in the plane of motion. Hence ~N(t) := ~r(t) × ~r′(t) is
normal to the plane of motion. Thus Kepler’s second law is equivalent
to showing that N is constant.

To this end, consider

(1)
d ~N

dt
= ~r′ × ~r′ + ~r × ~r′′ = ~r × ~r′′ = ~r × ~a ,

where ~a = ~r′′ is the acceleration vector of the motion. Newton’s famous
law ~F = m~a (here ~F is the force of the gravitational attraction of the
sun and the planet). So (1) says that d

dt
(~r × ~r′) = 0 if and only if

~r× ~F = 0, that is ~F is parallel to ~r. This is what’s known as a central
force. Newton’s law of universal gravitation (inverse square law) is
more precise:

(2) ~F = −MmG
~r

|~r|3

where M is the mass of the sun, m is the mass of the planet and G
is the universal gravitational constant. So Kepler’s second law follows
from (2).
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The proof of Kepler’s first law using (2) is somewhat tricky. Write
~r = rr̂ where |r̂| = 1. Then ~r′ = r′r̂+ rr̂′. Since r̂2 = 1, r̂ · r̂′ = 0. Here

we can interpret r̂′ = ωT̂ (|T̂ | = 1) as the angular velocity vector (ω is
the scalar angular velocity). Continuing,

(3) ~a = ~r′′ = r′′r̂ + 2r′r̂′ + rr̂′′ = −GM r̂

r2

by (2). Taking the dot product of both side of (3) with r̂ gives

(4) r′′ − rω2 = −GM
r2

.

since r̂ · r̂′ implies r̂ · r̂′′ = −ω2.

Recalling |~r×~r′| = |rr̂×(rr̂′ +r′r̂)| = |r2r̂× r̂′| = r2ω is constant, we
can write that the angular momentum mr2ω = L constant. Inserting
this in (4) gives

(5) r′′ = −GM
r2

+
L2

m2r3
.

So far so good. Now comes the tricky part. Motivated by “knowing
that” the orbit is an ellipse with one focus at the sun, it makes sense
to introduce polar coordinates (r, θ) with center at the sun. What does
the equation of an ellipse look like in these coordinates? With respect
to standard x,y coordinates , let the ellipse have major semi axis a and
minor semi axis b with the sun at (c,0). Then e = c

a
is the eccentricity

of the ellipse and the equation of the ellipse becomes

(6) r + |~r + 2ĉi| = 2a .

Therefore,

(r − 2a)2 = r2 + 4cr cos θ + 4c2 .

Simplifying leads to

(7)
1

r
=
a+ c cos θ

a2 − c2
=

1 + e cos θ

a(1− e2)
.

Now introduce u = 1
r

and θ as new independent variables. Then

d

dt
=
dθ

dt

d

dθ
= ω

d

dθ
=
Lu2

m

d

dθ
,(8)

dr

dt
=

1

u2

du

dt
= −L

m

du

dθ
,(9)

d2r

dt2
= −L

2

m2
u2c

d2u

dθ2
.(10)
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Inserting (8)(9)(10) into (5) and simplifying yields

(11) uθθ + u =
GM

L2
m2 .

But (11) is easy to solve. The general solution is

u =
GM

L2
m2 = A cos θ +B sin θ .

To find A,B we must understand the initial conditions for u, du
dθ

at
θ = 0. In terms of the motion at θ = 0 we are at the perihelion or
closest position to the sun, hence r achieves its minimum value or u = 1

r

achieves its maximum value. Hence B = du
dθ

(0) = 0 and so

1

r
=
GM

L2
m2 = A cos θ .

To compare this with the form of the ellipse we derived earlier in (7),
we rewrite this as

1

r
=

1 + A′ cos θ
L2

GMm2

for a new constant A’ satisfying

rmin(1 + A′) =
L2

GMm2
.

Then A′ = e, L2

GMm2 = a(1−e2) and a,e are determined by the equations

a(1− e) = rmin(12)

a(1− e2) =
L2

GMm2
(13)

This concludes the proof of Kepler’s first law.

We now turn to Kepler’s third law. The area of the elliptical orbit
with semi major axis a and semi minor axis b (( b

a
02 = 1 − e2) is πab

by a standard Calculus 2 computation. On the other hand,

dA

dt
=

1

2
r2ω =

L

2m
.

Hence if T is the period of the orbit, L
2m
T = πab. This gives

T 2 = (
2mπab

L
)2 =

4m2π2a2b2

L2
=

4m2π2a4(1− e2)
GMm2a(1− e2)

,

or T 2 = 4π2a3

GM
. Note that T is independent of b!


