
When does a vector field have a potential function?

Consider a vector field (for example a force field) ~F (~x) =< F 1(~x), F 2(~x), F 3(~x) >

where ~x =< x1, x2, x3 > and F 1, F 2, F 3 are the coordinate functions of ~F . We say

that ~F has a potential function φ or is conservative if ~F = ∇φ. If ~F is C1 and φ is

C2 , then by the theorem of the equality of mixed partial derivatives applied to φ, a

necessary condition is that

∂F i

∂xj
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for all i 6= j .

There is an important example of a vector field in R2 where this “local condition”

is satisfied (which actually implies that in a neighborhood of any point there exists a

potential function) but fails to have a “global potential” function.

Example 0.1. Let ~V (x, y) =< − y
x2+y2

, x
x2+y2

>. Then it is easy to check that
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so the necessary condition is satisfied at every point except (0,0) where V (x, y) is not

defined. To understand what is going on, we can write ~V = ∇φ in polar coordinates:

~V (r, θ) =
1

r
< − sin θ, cos θ >=

1

r
êθ = φrêr +

φθ
r
êθ .

(Here we are using our previous example of how ∇φ looks in polar coordinates.)

Comparing these expressions tells us that φr = 0 and φθ = 1. Thus up to a constant,

φ = θ = arctan y
x
, i.e φ is just the angle θ. But this is a problem if we want φ to be

defined in a neighborhood of the unit circle, for such an angle must be discontinuous

when we start at the point (0,1) and move counterclockwise around the circle and

return to our starting point. However there is no problem locally in defining such an

angle. We will return to this problem later in the semester.
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