1. a. Write the general form of the Sturm-Liouville differential equation \(Lu = 0 \) in one space dimension.

b. Write the corresponding Green’s formula (Lagrange identity) for any two solutions \(Lu = Lv = 0 \), \(a < x < b \).

c. \(L \) is called self-adjoint for the boundary conditions if \(\int_a^b (uLv - vLu) \, dx = 0 \) for any two solutions \(Lu = Lv = 0 \) satisfying the boundary conditions.

Show that the boundary conditions \(u'(a) = 0, u'(b) = -hu(b) \) lead to a self-adjoint problem.

2. Consider the second order differential equation
\[
x^2 u''(x) + 4xu'(x) + (\lambda - x^2)u(x) = 0, \quad 1 < x < 2, \quad u(1) = u(2) = 0.
\]
a. Put the equation in Sturm-Liouville form.

b. Write out the orthogonality condition for the eigenvalues.

c. Show that all eigenvalues \(\lambda > 0 \).

3. Consider the boundary value problem
\[
y''(x) + y(x) = f(x), \quad y(0) = y(\pi) = 0.
\]
a. Show that a necessary condition for a solution is that \(<f, \sin x> = 0 \).

b. Assuming the orthogonality condition of part a., find the solution by the method of eigenfunction expansion.

4a. Show that the eigenvalue problem
\[
e^{x^2} \phi'' + x \phi' + \lambda x^2 \phi = 0, \quad 1 < x < 2, \quad \phi(1) = \phi(2) = 0
\]
is a regular Sturm-Liouville eigenvalue problem and write down the orthogonality condition on the eigenfunctions.

b. It is known (see Haberman section 5.9) that for \(n \) large the large eigenvalues are asymptotically given by the formula
\[
\lambda_n \approx \left(\frac{n\pi}{\int_1^2 \sqrt{\sigma(x)p(x)} \, dx} \right)^2.
\]
Find the asymptotic value for \(\lambda_n \).

5a. Find the Green’s function for the problem
\[
u''(x) - u(x) = f(x), \quad 0 < x < 1, \quad u(0) = 0, \quad u'(1) = 0,
\]
by direct construction from \(u_1(x) = \sinh x, \quad u_2(x) = \cosh(x-1) = \cosh 1 \cosh x - \sinh 1 \sinh x. \)
b. Use the Green’s function to find the explicit solution for $f(x) = x$. Check directly that your solution is correct.

6. Consider the problem $y'' + k^2 y = f(x)$, $0 < x < \pi$, $y(0) = y(\pi) = 0$.
 a. Find the eigenfunctions and eigenvalues of $y'' + k^2 y + \lambda y = 0$, $0 < x < \pi$, $y(0) = y(\pi) = 0$.
 b. Express $f(x)$ as a Fourier series and solve the original problem. What assumptions are needed?
 c. Use your answer from part b. to immediately write down the Green’s function $G(x, x_0)$ for the original problem.