Review problems for Midterm 1

1. Review the solution from my first week lectures of the simple transport equation

\[u_t + bu_x = 0 \ , \ u(x,0) = g(x) \ . \]

Now figure out how to solve (by a change of dependent variable \(u(x,t) \) goes to \(v(x,t) \))

\[u_t + bu_x + cu = 0 \ , \ u(x,0) = g(x) \ . \]

Here \(b \) and \(c \) are constants.

2. Solve the inhomogeneous heat equation \(u_t = u_{xx} - \sin x \) on \((0, \pi)\) with

\[
\begin{align*}
 u(0,t) &= 0 \ , \ u_x(\pi,t) = 0 \ , \ u(x,0) = 2 \sin 2x - x .
\end{align*}
\]

3. A thin rectangular plate bounded by the lines \(x=0, \ x=a, \ y=0, \ y=b \) whose surface is impervious to heat flow is given an initial temperature distribution \(\sin \frac{\pi x}{a} \sin \frac{\pi y}{b} \). Its four edges are kept at zero temperature. Find the temperature distribution at later times.

4. Find the steady state temperature \(u(r, \theta) \) of a thin plate over the sector

\[\Omega = \{(r, \theta) : 0 < r < 1 \ , \ 0 < \theta < \frac{\pi}{3} \} \]

given that \(u(r,0) = 0 \ , \ u_r(r, \frac{\pi}{3}) = 0 \) and \(u(1, \theta) = \sin \frac{3}{2} \theta \). You may assume that \(u \) is bounded.

5. Find the solution of Laplace’s equation in a disk of radius \(R \) with boundary values 1 on the upper semicircle and 0 on the lower semicircle boundaries.

6. Let \(f(x) \) be defined on the real line by

\[
 f(x) = \begin{cases}
 2 - x & \text{if } 0 < x < 3 \\
 0 & \text{if } -3 < x < 0 \\
 f(x + 6) = f(x) & \text{otherwise}
 \end{cases}
\]

Find and plot the Fourier series of \(f \) on \((-6,6)\).

7. Find a cosine series to represent \(f(x) = e^x \) in \(0 \leq x < \pi \). Sketch the series over the range \((-2\pi, 2\pi)\).
8. Show that in \((-\pi, \pi)\),

\[x \sin x = 1 - \frac{1}{2} \cos x + 2 \sum_{n=2}^{\infty} (-1)^{n-1} \frac{\cos nx}{n^2 - 1} . \]

Use this to deduce that

\[\sum_{n=2}^{\infty} \frac{(-1)^n}{n^2 - 1} = \frac{1}{4} . \]

b. \[\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{4n^2 - 1} = \frac{\pi - 2}{4} . \]