1. Since \(f \) is measurable, \(\int_E f \) exists. Since all the \(E_k \) are disjoint, by theorem 5.24 we have
\[
\int_E f = \sum_k \int_{E_k} f = \sum_k \int_{E_k} f_{E_k} = \sum_k \int_{E_k} a_k = \sum_k a_k |E_k|.
\]

2. If \(f_k = -\chi_{(k, \infty)} \), then all the \(f_k \) are measurable, bounded below by \(\phi : \mathbb{R} \to \mathbb{R} \) defined by \(\phi(x) = -1 \), and they increase to \(f : \mathbb{R} \to \mathbb{R} \) defined by \(f(x) = 0 \), but \(\int \chi_{(k, \infty)} = -\infty \) does not converge to \(\int 0 = 0 \). If \(f_k = \chi_{(k, \infty)} \), then all the \(f_k \) are measurable, bounded above by \(\phi : \mathbb{R} \to \mathbb{R} \) defined by \(\phi(x) = 1 \), and they decrease to \(f : \mathbb{R} \to \mathbb{R} \) defined by \(f(x) = 0 \), but \(\int \chi_{(k, \infty)} = \infty \) does not converge to \(\int 0 = 0 \).

3. Since each \(f_k \) is measurable, \(f \) is measurable. Since \(f_k \leq \phi \) almost everywhere, where \(\phi = f \), if \(\int_E f \) is finite then by theorem 5.19 \(\int_{E_k} f_k \to \int_E f \). If \(\int_E f = \infty \), then the fact that \(f_k \to f \) implies that \(\int_{E_k} f_k \to \infty \).

4. Since \(|x^k f(x)| \leq |f(x)| \) for all \(x \in [0,1] \), by theorem 5.10 \(\int_{[0,1]} |x^k f(x)| \leq \int_{[0,1]} |f(x)| \). Since \(f \in L([0,1]) \), by theorem 5.21 \(|f| \in L([0,1]) \), so \(|x^k f(x)| \in L([0,1]) \) and again applying theorem 5.21 we have \(x^k f(x) \in L([0,1]) \). Since \(f \in L([0,1]) \), by theorem 5.22 \(f \) is finite almost everywhere on \([0,1] \), so \(x^k f(x) \to 0 \) almost everywhere on \([0,1] \). Since \(|x^k f(x)| \leq \phi(x) \) for all \(x \in [0,1] \), where \(\phi = |f| \in L([0,1]) \), by theorem 5.36 \(\int_{[0,1]} x^k f(x) \to \int_{[0,1]} 0 = 0 \).

5. By Egorov’s theorem, there exists a closed set \(F_1 \subset E \) such that \(|E - F_1| < 2^{-1}|E| \) and \(f_k \) converges uniformly to \(f \) on \(F_1 \), and for any \(n \) there exists a closed set \(F_{n+1} \subset E - \bigcup_{i=1}^{n} F_i \) such that
\[
\left| E - \bigcup_{i=1}^{n} F_i \right| - F_{n+1} = \left| E - \bigcup_{i=1}^{n+1} F_i \right| < 2^{-n+1}|E| \quad \text{and} \quad f_k \to f \quad \text{uniformly on} \quad F_{n+1}.
\]
Then \(E - \bigcup_{i=1}^{n} F_i \subset E - \bigcup_{i=1}^{n+1} F_i \) for each \(n \), so \(E - \bigcup_{i=1}^{n} F_i \subset E - \bigcup_{i=1}^{n} F_i \subset E - \bigcup_{i=1}^{n} F_i \subset E - \bigcup_{i=1}^{n} F_i \) for each \(n \), so
\[
\int_{E - \bigcup_{i=1}^{n} F_i} f_k = 0 \quad \text{and} \quad \int_{E - \bigcup_{i=1}^{n} F_i} f = 0.
\]
Since each \(F_i \) is closed, \(\bigcup_{i=1}^{n} F_i \) is measurable, so by theorem
5.24 \(\int_{E} f = \int_{F_1} f + \int_{F_2} f = \int_{F_k} f \). Since all the \(F_i \) are measurable and disjoint, again applying theorem 5.24 we have
\[\int_{E} f_k = \sum_{i=1}^{\infty} f_k \]
so \(\lim_{k \to \infty} \int_{E} f_k = \lim_{k \to \infty} \sum_{i=1}^{\infty} f_k = \lim_{n \to \infty} \sum_{i=1}^{n} f_k \). Since
\[|f_k| \leq M \quad \text{and} \quad |F_i| \leq |E - F_{i-1}| < 2^{-i}|E| \quad \text{for} \quad i \geq 1 \quad (\text{with} \quad F_0 = \emptyset) \], we have
\[\left| \int_{F_i} f_k \right| \leq 2^{-i}|E|M \quad \text{and} \quad \sum_{i=1}^{\infty} 2^{-i}|E|M = 2|E|M < \infty \]. Thus by the Weierstrass M-test, the rate at which \(\sum_{i=1}^{n} f_k \) converges to \(\sum_{i=1}^{\infty} f_k \) as \(n \to \infty \) is independent of \(k \). Thus we can interchange the two limits in our expression for \(\lim_{k \to \infty} \int f_k \), so we get
\[\lim_{k \to \infty} \int_{E} f_k = \lim_{k \to \infty} \sum_{i=1}^{n} \int_{F_i} f_k = \lim_{n \to \infty} \sum_{i=1}^{n} \int_{F_i} f_k = \lim_{n \to \infty} \sum_{i=1}^{n} \int_{F_i} f_k \].
Since \(f_k \) converges uniformly to \(f \) on each \(F_i \) and \(|F_i| < \infty \), by theorem 5.33, \(\lim_{n \to \infty} \int_{F_i} f_k = \int_{F_i} f \), so we have
\[\lim_{k \to \infty} \int_{F_i} f_k = \lim_{n \to \infty} \sum_{i=1}^{n} \int_{F_i} f_k = \lim_{n \to \infty} \sum_{i=1}^{n} \int_{F_i} f = \sum_{i=1}^{\infty} \int_{F_i} f = \sum_{i=1}^{\infty} \int_{F_i} f = \int_{E} f . \]

6. We have
\[\frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{f(x + h, y) - f(x, y)}{h} = \lim_{h \to 0} \frac{1}{h} \left(f(x + \frac{1}{n}, y) - f(x, y) \right) \]
\[= \lim_{n \to \infty} \left(f(x + \frac{1}{n}, y) - f(x, y) \right) \]. Since \(f \) is a measurable function of \(y \), so is \(f(x + \frac{1}{n}, y) \), and thus so is \(n \left(f(x + \frac{1}{n}, y) - f(x, y) \right) \), which implies that
\[\lim_{n \to \infty} n \left(f(x + \frac{1}{n}, y) - f(x, y) \right) = \frac{\partial f}{\partial x} \] is a measurable function of \(y \). Since \(\frac{\partial f}{\partial x} \) is bounded, let \(M = \sup_{[0,1] \times [0,1]} \left| \frac{\partial f}{\partial x} \right| \). Since
\[\lim_{n \to \infty} n \left(f(x + \frac{1}{n}, y) - f(x, y) \right) = \frac{\partial f}{\partial x} \], it follows that
\[\lim_{n \to \infty} \left| n \left(f(x + \frac{1}{n}, y) - f(x, y) \right) \right| = \left| \frac{\partial f}{\partial x} \right| \], so
\[n \left(f(x + \frac{1}{n}, y) - f(x, y) \right) \] is eventually bounded by \(M + \varepsilon \) for any \(\varepsilon \). By corollary 5.37, this implies that
\[\int_{[0,1]} n \left(f(x + \frac{1}{n}, y) - f(x, y) \right) dx \to \int_{[0,1]} \frac{\partial f}{\partial x} \] .

7. We have
\[\int_{-\infty}^{\infty} \frac{\sin x}{x} dx = \pi < \infty \], but
\[\int_{-\infty}^{\infty} \left| \sin x \right| dx = \infty \], so
\[\left| \sin x \right| \notin L(\mathbb{R}) \] and thus
\[\frac{\sin x}{x} \notin L(\mathbb{R}) \].