Math 631: Problem Set 3 due in class Monday, March 21

- 1. Evans p.86: 10
- 2. Evans p.88: 18
- 3. Evans p.88: 19
- 4. Evans p.88: 24
- 5. Solve $u_{tt} u_{xx} = 0$ on $(0, L) \times (0, \infty)$

$$u = g, u_t = 0$$
 on $(0, L) \times \{t = 0\}$ $u = 0$ on $(\{0\} \cup \{L\}) \times (0, \infty)$.

by converting to a problem on $R\times (0,\infty)$ using odd reflection. Conclude that

$$u(x,t) = \frac{1}{2} \{ \sum B_n \sin(\frac{n}{\pi}(x+t) + \sum B_n \sin(\frac{n}{\pi}(x-t)) \},\$$

where $\sum B_n \sin \frac{n}{\pi} x$ is the Fourier series of the 2*L* periodic odd extension of g(x).