Math 631: Problem Set 3 due in class Monday, March 21

1. Evans p.86: 10
2. Evans p.88: 18
3. Evans p.88: 19
4. Evans p.88: 24
5. Solve $u_{t t}-u_{x x}=0$ on $(0, L) \times(0, \infty)$

$$
u=g, u_{t}=0 \quad \text { on }(0, L) \times\{t=0\} \quad u=0 \text { on }(\{0\} \cup\{L\}) \times(0, \infty) .
$$

by converting to a problem on $R \times(0, \infty)$ using odd reflection. Conclude that

$$
u(x, t)=\frac{1}{2}\left\{\sum B _ { n } \operatorname { s i n } \left(\frac{n}{\pi}(x+t)+\sum B_{n} \sin \left(\frac{n}{\pi}(x-t)\right\},\right.\right.
$$

where $\sum B_{n} \sin \frac{n}{\pi} x$ is the Fourier series of the $2 L$ periodic odd extension of $g(x)$.

