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This is a sequel to [1] and [2]. We will study the Dirichlet problem in a bounded domain 

f~ in R" with smooth boundary aft: 

F(D2u) = ~p in Q, 

u=cp o n S ~ .  (1) 

The function F is of a very special nature. It is represented by a smooth symmetric 

function f(21 .. . . .  2,) of the eigenvalues 2=(21 .. . . .  2,) of the Hessian matrix D2u = 
{uu}, which we denote by 2(uu). The equation is assumed to be elliptic for the 

functions under consideration, i.e. 

a f > o ,  Vi (2) 
82 i 

and to satisfy: 

f is a concave function. (3) 

As we will see in section 3, this means F is a concave function of the arguments {Uo. }. 
The function f will be required to satisfy various conditions. First of all it is 

assumed to be defined in an open convex cone F~R",  with vertex at the origin, 

containing the positive cone: {2 E R" I each component 2i>0}, and to satisfy (2), (3) in 
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F. F is assumed to be invariant under interchange of any two 2i; i.e. it is symmetric in 

the 2i. It follows easily that 

We distinguish two types of  cones. 

Definition. F is said to be of  type 1 if the positive 2i axes belong to OF; otherwise it 

is called of type 2. 

We assume ~0 E C~(ff~), q~ E C| and, for convenience, 

~ > 0 in ~ .  (5) 

Set 

0 < ~Po = rain ~p ~< max ~p = ~p r 
Q Q 

We assume that for some ~3o<~Po, 

lim f(2) ~< ~o for every 2 o E aF. (6) 
~.-.-,,t o 

In addition we assume that for every C>0  and every compact set K in F there is a 

number R=R(C, K) such that 

f(21 . . . . .  2n_l,2n+R)--->C for a l l 2 E K ,  (7) 

f(R2)/> C for all 2 E K. (8) 

From (8) and concavity it follows that 

2 i f~, > 0 in F. (8)' 

Using (3) and (6) we may conclude that there is a positive number 6 such that 

X2i,-->6 in the set T= (XErlf(2)>_-W0 }. (9) 

Namely,  the set T is closed, convex and symmetric in the 2i. The unique closest 

point in T to the origin is therefore of the form (b . . . . .  b) with b>0. It follows that (9) 

holds with 6=nb. 
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Consider now the domain f~. In casef=logl I2 i  we assumed in [1] that Q is strictly 

convex. On the other hand if f =  E 2i, any fl with smooth boundary should be allowed. 

What kind of fl should be admitted in the general case? 

We will suppose that there exists a number R sufficiently large such that at every 

point xEaf~, if x~ . . . . .  xn-1 represent the principal curvatures of af t  (relative to the 

interior normal), then 
(~1~1 . . . . .  ~l~n-- 1, R) E F. (10) 

As we will see, this is a natural condition for type 1. Note the following 

LEMMA A. Assume that F is o f  type 1 and that (10) holds. Then Of~ is necessarily 

connected. 

Proof. Suppose af2 has more than one component. Let f ~  be the component 

which is the boundary of the unbounded component of Qc, the complement of ~ .  By 

shrinking a large sphere enclosing ~ so that it first touches a component of af~ other 

than fll we find a point on aQ where xl ... .  , Xn-l<0. According to (10), at that point 

(Xl .. . . .  u , - l , R )  E F. Consequently (0 .. . . .  0,R) belongs to F---contradicting the fact 

that the positive ~.,, axis does not. 

Definition. A function u E C2((2) with u=q0 on aft  is called admissible if at every 

xEt),  ;~(uu) (x) E r .  

We now state our main results. The case q0=constant is much easier to treat than 

the general case so we consider that first. 

THEOREM 1. Assume conditions (2), (3), (6--8) and q~-constant. There exists a 

unique admissible solution uEC~(~)  o f ( l )  i f  and only if (10) holds at every point o f  

a l l  

The sufficiency statement of Theorem 1 is a special case of 

THEOREM 2. For general cp, there exists a unique admissible solution u E C| o f  

(1) if(2), (3), (6--8) and (10) are satisfied. 

THEOREM 2'. In case ~p--constant, Theorem 2, holds even i f  condition (7) is 

dropped. 

Remark. Cones of type 2 are rather simple to treat because the orthogonal 

projection F' of F onto R "-~ (along the 2~ axis) is the entire space R "-1. Thus 

condition (10) holds automatically and furthermore, condition (8) implies condition (7). 
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Examples. (1) Here is a simple example with n=2 and F of type 2: 

f(21,22) = ((21 -F22)2--r(21 --22)2) 1/2, 0 < �9 < 1. 

This is simply obtained from the (Monge-Amp~re) case (2122) 1/2 by a linear transfor- 

mation. With k=4z/(1-~-), it follows from Theorem 2 that for any bounded f~ in R 2, af2 

smooth, the problem 

(Au)Z+k(u~Uyy-U2)=~(x,y)>O in 0 ,  u=cp on Of~, 

with ~, q~ E C ~176 has a solution u E Coo(O). 

(2) An interesting example of a functionfsatisfying the conditions of Theorem 2 is 

f(2) = [Otk)(A)] l/k 

where 

o'(k)(~) = Z 2i1"" 2ik 
i l<. . .<i  k 

is the kth elementary symmetric function. The fact that this is an example follows from 

the paper [3] of L. G~ding concerning hyperbolic polynomials---of which o tk) is an 

example. This will be explained in the next section. 

For o ~k), l<k<~n, we will prove the following result: 

THEOREM 3. The Dirichlet problem 

otk)(2(u,:/))= l p > 0  in 0 ,  k > l ,  u=cp on at) (1)' 

admits a (unique) admissible solution u E C~176 provided 

Of 2 is connected, and at every point x E af2, oSk-t)(ul . . . . .  un_ l) >0.  (10)' 

In case q~=-constant, condition (10)' is also necessary for  existence o f  a solution in 
c2(0). 

Proof. The necessity follows from Proposition 1.3, Remark 1.1 just following it, 

and Lemma A. In Remark 1.2 we show that (10) follows from (10)'. Using Proposition 

1.1, the sufficiency then follows from Theorem 2. 

The Monge-Amp~re equation is the case k=n" 

~ = U 2i = det (u,j) = ~p. 
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In Theorems 1-3 the uniqueness follows from ellipticity and the maximum princi- 

ple. We will also make use of the following, somewhat unusual, form of the maximum 

principle. Here u is an admissible solution of (1) in n and v E c2(n) N C(~). 

LEMMA B (Maximum principle). A s s u m e  that at every point  x in n ,  A(vo(x)) lies 

outside the set F(x)={g EFIf(A)~p(x)}. l f  u<.v on a n ,  then 

u<.v  in n .  

Proof. If not, v - u  achieves a negative minimum at some point xE n.  Since, as 

matrices, {vo)~{uu) at x, the eigenvalues of {vo) are not smaller than the correspond- 

ing ones for {uo). However A(u U) E f'(x), and it follows that A(vo.)E F(x), a contradic- 

tion. 

In [5], N. M. Ivo~kina studied the Dirichlet problem (1)': She established a priori 

estimates for the C 2 norm of convex solutions having boundary values q0=constant in 

strictly convex f~. As she remarks, it is not reasonable to expect the solutions to be 

convex. 

In Section 1 we describe hyperbolic polynomials P. By the corollary to Proposition 

1.1, Theorems 1 and 2 apply to a wide class of these. In addition we prove necessity in 

Theorems 1 and 3. 

In Section 2 we show that if (10) holds then there exist smooth admissible 

functions in ~ .  In particular there is one, u, which is a subsolution: 

F(u_o) >~ ~p in ~ ;  

in fact F(u_e) may be made arbitrarily large. 

Section 3 contains a proof that concavity of f implies concavity of F(ue); this 

proof, due to the referee, is simpler than our original one. Sufficiency in Theorems 1 

and 2 is proved in Sections 4--7 via the continuity method and a priori estimates for the 

C 2 norm o f  u. In Section 4 the estimates luIcl<<.C are proved. The estimate for the 

second derivatives, in particular at the boundary, are established in Section 5 for F of 

type 2, and completed in Section 6 for type 1, and in Section 7 for Theorem 2'. 

In Section 9 we present an example of an equation (1) for which (2), (3), (5) and (6) 

hold but not (7), (8). Here ~p E Ck(~), where k>0 is any given integer. There is a unique 

convex solution in class C2(n)N C(~) but it is not in C2(~'~). 
(3) Theorem 2' has some interesting applications. Let G be an open convex region 

in A-space, R n, with smooth (C ~176 boundary Y satisfying: 

18-858289 Acta Mathematica 155. Imprim6 le 20 Novembre 1985 
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G is symmetric in the 2i, and the interior normal 

at every point of X lies in the positive cone. 

The origin is not in 0 and it lies on the opposite side, 
from G, of every tangent hyperplane P to X. 

(11) 

(12) 

It follows that: 

The cone F with vertex at the origin generated by 
points of Y. contains the positive cone. 

(13) 

We see that G is necessarily unbounded. 

In a bounded domain [2 in R n, with 0[2 smooth, consider the Dirichlet problem: 

find a function u E C| satisfying 

2(uu)EX for every xE[2, u=q0 on Of 2, opEC | (1)" 

Remark. The condition (11) corresponds to ellipticity, the convexity of G to the 

concavity condition (3). 

THEOREM 4. The Dirichlet problem (1)" admits a solution u E C=(O) provided 012 

satisfies condition (10). 

(Recall that (10) is automatic if F is of type 2.) 

Proof. In F de f ine fas  the function which equals 1 on X and is positive homogene- 

ous of degree one. To solve (1)", we solve 

f(A(u(/)) = 1 in [2, u = q~ on 012. (14) 

We see that f satisfies (6), with if0=0, and (8). By (11) we see that f satisfies condition 

(2). Condition (3) is easily verified using the convexity of X. Theorem 2' then yields a 

solution of (14). 

Reese Harvey and H. Blaine Lawson Jr. (in [4], Sections III.2.A and B) have taken 

up the differential equations 

[(n~/2l 
Im det (6~+iuu) - ( -  1)ke(2k+l)(A(U0.)) = 0. (15) 

k~0 

They showed that it is elliptic at every solution u and (see their Theorem 2.7) that if u is 

a solution, then the graph of Vu is an absolutely volume-minimizing submanifold of 

R 2n. They asked the question: does the Dirichlet problem 
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u s a t i s f i e s  (15) in  f~, u = q0 o n  a ~ ,  

have solutions? 

As we'll see in Section 8, the solution set of  

(16) 

/ t  

g(A) = Im I- I  (1 +i,~j) = 0 (17) 
j = l  

has exactly n components---smooth hypersurfaces---in case n is odd, and ( n -  1) in case 

n is even. One might conjecture that there should be the same respective number of  

solutions for suitable domains f2. The case n=3 looks particularly inviting: 

det uij- E uii = 0 in Q, u = 9  on af t .  (16)' 

As an application of  Theorem 4 we prove 

THEOREM 5. The Dirichlet problem (16) has at least two solutions belonging to 

C~(~) in the following cases: 

(i) n is odd and O~ is strictly convex, 

(ii) n is even and Of~ satisfies (10) with k=n-1 ,  i.e., 

OQ is connected and acn-2)(Xl . . . . .  ~n-t) > 0 on OQ. (18) 

The proof uses 

LEMMA C. One of  the components X of  the solution set of(17) is the boundary o f  a 

convex region G satisfying (11), (12), (13). In case n is odd the corresponding cone F is 

the positive cone. In case n is even the cone F is the cone r (o  (n-l), a) o f  Section 1, i.e. 

the component in R n, containing a=(1 . . . . .  1), in which o (n-l) is positive. 

Proof of  Theorem 5 (i). In this case Theorem 4 yields a solution u of  (1)" and hence 

of (16). It also yields a solution v of  

~(vv)EX in f~, v =  - 9  on af t .  

The function - v  is then another solution of  (16). 

(ii) In case n is even we obtain two solutions by using Theorem 4 in the same way. 

That condition (18) implies (10) is shown in Remark 1.2 of  the next section. 

Note that for (16)', with 9 = 0 ,  neither of  our two solutions is the solution u=O. 
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Lemma C is proved in Section 8. 

We wish to express our thanks to the referee for helpful comments. 

Added in proof. We have learned that the concavity result of our Section 3 is 

contained in Theorem 5.1 (i) of the paper by J. Ball: Convexity conditions and 

existence theorems in nonlinear elasticity. Arch. Rat. Mech. Anal., 63 (1977), 337-403. 

We also wish to call attention to a recent paper by N. V. Krylov: On degenerate 

nonlinear elliptic equations, II. Mat. Sbornik, 121 (163) (1983), 211-232; english transla- 

tion: Math. USSR Sbornik, 49 (1984) 207-228, which treats various nonlinear second 

order equations. 

1. Hyperbolic polynomials 

In [3] G~ding proved a beautiful inequality for homogeneous hyperbolic polynomials. 

In this section we will summarize some of the results of [3]--which we will use. 

Hyperbolic polynomials. A homogeneous polynomial P(2) of degree k defined in 

R" is called hyperbolic with respect to a direction a E R n, abbreviated, hyp a, provided 

for every 2 E R" the polynomial in t, 

P(ta+2), 

has exactly k real roots. 

Necessarily P(a)=l=O. We will always suppose P(a)>0; it follows that the coeffi- 

cients of P are real. It is easily seen that if P is hyp a so is 

a= ~ aj a--~--e (1.1) 
a ; t~  " 

Since ot")(2)=II2i is hyp a for a=(1 .. . . .  1) it follows readily that so is oXk)(2), k<n. 
Assuming P(a)>0, let F=F(P,  a) denote the component in R", containing a, in 

which P>0.  It is proved in [3] that F is a convex cone*R ~, with vertex at the origin, 

and that P is hyp b for every bEF.  Furthermore, for Q given by (1.1), we have 

r(P, a ) c r (Q ,  a). 

In particular, 

r (o# )) c r ( a  (k- 5)). (1.2) 

On the positive hi axes we have a(k)(2)=0 for k> l  and therefore for o (k), the cone F, 

which clearly contains the positive cone, is of type 1. 

The main result proved in [3] is an inequality involving the completely polarized 
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form M of P: For k vectors/]1, . . . ,  ~,k in R n (,~J has components ;t~ . . . . .  2~), 

M(21 ...... A~ = ~.. ~A,~ e(A). 

The inequality states that for )~l . . . . .  A k E F, 

M(A 1 . . . . .  2 k) >I P(Al)l/k... p(Ak) 1/k . 

A particular case (from which the general case is derived) is the inequality: For 2 and/~ 

in F. 

1 O p(iz)l/kp(A)H/k. (1.3) 

This is the form we will use. It is equivalent to the assertion that eX/k(~) is a concave 

function on F. 

This is easily proved. The statement that p1/k(~) is concave in F can be expressed 

analytically as: For ~, 2 E F, 

pl/k(~ ) ~ pl/k(~)..l_ ~ (~j--~j) ~ (pI/k(~)) 

i.e. 

pl/k(ft) ~ pI/t(~.) +___~ pl/k-l(~) ~ /~j p~j(~)_ pi/k(~) 

since p~/k is positive homogeneous of degree one, i.e. 

which is (1.3). 

PROPOSITION 1.1. Suppose that P is hyp a for a=(1, ..., 1), that F contains the 

positive cone, and that P is symmetric in the ;ti. Then f=pl/k satisfies in F conditions 

(2), (3) and (6)-(9). 

COROLLARY. Theorems 1 and 2 apply for  such f ,  in particular for P=o tk). 

Proof. (2) is easily proved: Since p1/k is concave and positive in F we must have 

Pa~>0 in F. Suppose Pa=O for some i at some point Z in F. By concavity again we find 
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P~i---0 if we increase Ai. Suppose i= 1. Then by analyticity, P~,/12 . . . . .  )~n) is indepen- 

dent of/~. Therefore the whole line L: (u, 22 .. . . .  2,), -w</~<oo,  belongs to F. Using 

the convexity of F it is easily seen that any doubly infinite line parallel to L and close to 

it also belongs to F. On any such line Pl/k>O and is concave. This is only possible if P 

is constant on the line. Hence we find P a ~ 0  in a full neighbourhood of L. By 

analyticity it follows that P is independent of 21. Since P is symmetric, this is 

impossible; (2) is proved. 

We have already proved (3); (6)follows from the fact that f=O on OF. Consider, 

next, (7); if it did not hold there would be a constant C and a sequence 2 j E K, and 
RJ--~ + 00, such that 

f(]~J . . . . .  /~J 1 , / ~ J + R ) ~ < C  forO~<R~<R J, 

(here we use (2)). It follows that for some 2 E K, 

f(21 .. . . .  2,_1,2,+R)<~C for 0~<R< oo. 

But f ( /~ l  . . . . .  2n-i,~.n+R) is a polynomial in R which, by (2), is strictly increasing for 

R>O--a  contradiction. Finally, (3) and (6) yield (9), and (8) follows by homogeneity. 

Proposition 1.1 is proved. 

Our next result shows that condition (10) is a necessary condition in Theorem 1 for 

f=p1/k with P a hyperbolic polynomial. 

PROPOSITION 1.3. Let P be as in Proposition 1.1. Assume that there is a smooth 

function u in (2 vanishing on O~ and such that P(A(u~/))>0 in ~ .  Then necessarily O~ 

satisfies condition (10). 

Remark 1.1. The necessity of condition (10)' in Theorem 3 follows from Proposi- 

tion 1.3 and Lemma A in the introduction. For if (xl . . . . .  u , -1 ,R)  belongs to F(o tk), a) 

for a=(1 ..... 1) then by Proposition 1.1, 

0 o~k)(~; .... x , , ~ , R ) > 0 .  . . . ,  = 

Proof o f  Proposition 1.3. (i) Clearly u~0. Suppose u>0 somewhere. I fk  is even we 

may replace u by - u  and so u<0 somewhere. In case k is odd, v = - u  satisfies 

P(A(vit)) < 0 in ~ .  (1.4) 
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At the point where v takes a negative minimum each eigenvalue l j  of {oil} is nonnega- 

tive and hence 

l(Vil) E r ,  

contradicting (1.4). Thus in this case u cannot be positive anywhere. Consequently in 

any case we may suppose u<0 somewhere. At the point where u takes its minimum we 

have 

2j(urs) ~> 0 for every j. 

Hence ;t El" and, since P(2)>0, we see that 2 E F. Since Q is connected we conclude 

that at every point x E t), 

~(uu) E r. (1.5) 

(ii) From property (9), which holds by Proposition 1.1, we have 

A u > 0  in ~ .  

By the Hopf lemma we may assert that the interior normal derivative 

uv < - a  < 0 on Of], (1.6) 

for some positive constant a. 

In proving (10) for any boundary point of f~ we may suppose the point is the origin, 

that the postive x~ axis is interior normal there and that the boundary near there is 

represented by 
n--1 

xn = O(x')  = 1 E ga x2a+O(~c'[ 3)' (1.7) 
2 l 

where x ' = ( x l  . . . . .  x , , - O  and ~a are the principal curvatures of aft  at O. 

We have u--O on Off, i.e. 

u(x', o(x')) = 0; 

it follows, on differentiation, that at the origin for a,  f l < n ,  

u,,,a = - u,, o o~ = - u,, x,~ 6 ~ .  (1.8) 

For e small we see from (1.5) that at 0, 2(v~)E F where 

O m - U - - - - f  X a. 
a<n 
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For t large, consider the function 

w = l  (ew-1). 
t 

At the origin, 

W U = V ~ i + t u i u  j .  

Since t{uiuj} has nonnegative eigenvalues it follows from (1.5) that at the origin 

2(wa) E F. 

We shall make use of the following: 

LEMMA 1.2. Consider the n x n  symmetric matrix 

M =  

dl 
d2 0 

" � 9 1 7 6  

0 dn_ l 

a i an_  1 

i 

a l  

a n - I  

a 

with dl .... , dn-I fixed, la[ tending to infinity and 

lail<~c, i=  1 ... . .  n - 1 .  

Then the eigenvalues 21 .. . . .  ;tn behave like 

2a=d~+o(1), a< .n -1  

where the o(I) and O(1/a) are uniform--depending only o n  d l  . . . . .  d n _  1 and C. 

Proof. The eigenvalues 2 of M satisfy 

fd 1-2 
(3 

det O dn_ 1-2 

a a 

a._~a 
a 

a ,  

=0.  

(1.9) 

(1. lO) 
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Hence for [a[=oo the numbers dl . . . . .  dn_ 1 are roots. By continuity of the roots it 

follows that there are roots given by (1.9). To find the last eigenvalue, set X=ap. Then/z 

satisfies 

d e t ~  (3 

B 

a12 

a 

an- 1 
a 

o \ 

_ _  

1-./ 
For la[ =oo, we see that/~=1 is a simple root�9 By the implicit function therorem it 

follows that for tal large there is a root 

i.e. 

The lemma is proved. 

Returning to (w e) we see that at the origin, for -u~=b>a,  by (1.6), we have 

(v~ = 
o u. 1 
bXn-I--E Un-l'n l "  

\un, l Un.#-I u~ +tb2] 

Since A(v//) E F it follows from the lemma that for t sufficiently large 

(bxl-e+o(1) . . . . .  bun- l -e+o(1) ,  u ~ +  tb2+ 0(1)) E F 

and hence for t sufficiently large (so that o(1)<e), 

(bxl . . . . .  b x . -1 ,60  E F 

for some 6>0. Since b>a and F is a cone, it follows that 

(xl . . . . .  xn- 1, R) E F 

for R large, but under control; (10) is proved. 
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Remark 1.2. For P=o tk), suppose (10)' holds, then aQ also satisfies (10). 

This is easily verified: Since 

k) ~r o~k)0r . . . . .  X n - I , R )  = R o ~ k - I ) ( ~ !  . . . . .  ~r "[-O'( ( 1 . . . . .  ~r 

we see that for R large, 

O~k)(Xl . . . . .  x , - 1 , R ) > 0  at every xEaf~. 

On the other hand af2 contains a point where all the ua are positive so that at that point 

(Ul . . . . .  u ,_ i ,R)  E F. Since af2 is connected, (10) follows at every point on a~ .  

We conclude this section with the 

Proof of necessity in Theorem 1. The proof is just like that of Proposition 1.3. 

From condition (9) we have Au>6 and so u<0 in f~ and by the Hopf lemma, (1.6) 

holds. One may now follow the rest of the proof of Proposition 1.3. Q.E.D. 

2. The existence of admissible functions 

Assuming that af~ satisfies (10) we will construct an admissible function _u which is also 

a subsolution of (1). 

Suppose as in the preceding section that 0 E aft ,  and that the positive x, axis is 

interior normal there, and af~ is represented locally by (1.7). Near af2 let d(x) denote 

the distance to aft .  At the origin we have 

d~ t-~r . . . --M'n 
0 

:) 
For large t consider 

v = l  (e-ta-1); 
t 

at the origin, 

Vo.= -do.+t didj= ( i  | 
~n--I 

0 
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By (10) we see that for t sufficiently large, 2(v o) E r at, and hence near, the origin. Since 

the origin could be any boundary point we infer that for t large 

2(v~) E r 

in a neighbourhood of the boundary--in particular in a region 0~<d~<&--corresponding 

to -e<~v<~O for some e>0. 

Let g(s) be a C | convex function defined on s~<0 satisfying 

Then 

is well defined in Q and satisfies 

g-----1 for s~<-e  

g(O) = o 

g(s) > 0 on - e < s < 0 .  

w = g(v)  

w o = gvo+gv~ oj. 

Since g~>0 we see that the eigenvalues of w o are not less than the corresponding 

eigenvalues for go o and hence 

2(w U) e r 

and 

_ e _< v in the region ( ~ - ~  ~<0} 

2(w  o) E r evei'ywhere. 

Let r be in C| with compact support in Q such that r  in the complement 

of the region {-e/2<.v<~O}. For c>0 small, consider the function 

c r u = ~  

Then 

U~j = C~U'~- W~"~" C(~ i XjJI - ~j Xi"[- �89 Ixl = ~u)" 

In the complement in ~ of the boundary strip {-e/2<~v<.O}, we have ~-1 and 

therefore 

u~/= c~ /+  w O. 
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Since cA (Id) E F and A(w o) E F it follows that 

A(u 0) E F. 

In the boundary strip {-e/2~<v~<O} we have 

2 (wdEF.  

Hence for c sufficiently small, at every point in the strip, 

A(u0) E r .  

In case r the function u is admissible. Consider now the case of general q~. We 

may suppose that q~ has been extended smoothly inside f~. Set 

u_ = Au+cp 

with A large, and observe that as x varies in ~ the set of points A(u 0) fill out a compact 

set in F. Furthermore for 6o sufficiently small, the set of points A(uij+~q0u), 0<~<~0, 

fdl out a compact set in F. By property (8) we see that for R sufficiently large, and 

0~<~<~o, 

A(Ruo+ R~)gu) E F 

and 

f(A(Ruu+Rl~gij)) ~ ~)1 + 1 

Taking R =A so large that A6o ~> 1, we see that 

A(Auij-I-~ij) E F i.e. 2(_u o) E F. 

Furthermore we see that 

f(A(uo)) >I ~ +  1 

i.e. we have constructed a subsolution of (1). 

3. The concavity condition 

In this section we will verify that conditions (2) and (3) imply that the function 

F(D2u) = f(A(uu) ) 
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is a concave function of the elements of the symmetric matrix (uij} in the set where 

2(u e) E F. We leave it to the reader to verify that condition (2) implies that F is elliptic at 

all admissible functions u. 

Let 21(U)~A2(U)~<,..~<2~(U) be the eigenvalues of the n x n  symmetric matrix U 

with corresponding eigenvectors ul . . . . .  u,,. By the min-max characterization of 21, 

21(U) is clearly a concave function U. More generally, from U we construct the self- 

adjoint operator 

k 

U~k]= X 1 |  | U |  | 1 
i=1 i 

acting on the exterior powers A k by 

k 
uikltol A... A tok = X tol A... A U t o i A . . . A t o  k 

i= l  

with eigenvalues Air+... +;tik and eigenvectors ui A... Auik, i1<i2<. . .<i  k. Then 21+... +2 k 

is a concave function of U. 

Now f(A) is the infimum of linear functions of the form E/zjAj+/~0, with gj~>0, j~>0. 

By the symmetry of f we may take the #j decreasing for j > 0  (see Lemma 6.2). Then 

n - I  

= + . . .  + . . .  

is a concave function of U so f(2) is a concave function of U. 

4. Preliminary a priori estimates 

We have proved necessity in Theorems 1 and 3 and shown how sufficiency in Theorem 

3 follows from Theorem 1. Now we begin the proofs of the sufficiency in Theorems 1, 2 

and 2'. 

As in [1] and [2], the proofs go via the continuity method and a priori estimates. Set 

u~ 2 

with k>0 chosen so thatf(k . . . . .  k)--m-~)l . By conditions (6) and (8) there is such a unique 

k. We use the continuity method to find for every t in 0~<t~<l the admissible solution u t 

of 
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f(2(u~)) = (I - t )  ~l  +t~p =:  ~pt 

u t = t g + ( l _ t ) u  o =: 9t on 0f~. (1)t 

For t=0  the solution is u~ for t = l  it is our desired solution of  (1). 

In [2] and N. V. Krylov [6] (1) it was shown how, from a priori estimates 

lu'lc  < c (4.1) 

and uniform ellipticity of the linearized operator L = E  F,#((uu))ao., one may derive 

estimates 

So it suffices to derive a priori estimates (4.1) and to show that the set of values 3.(u t) 

for the solutions u t lie in a compact  set in F. 

The a priori estimates 

]Uric, <~ C (4.2) 

in Theorems 1 and 2' are easily established. 

In section 2 we have constructed smooth subsolutions. Thus for each t we have a 

subsolution _u t satisfying (2.1). Clearly lu_tJc,<~C for 0<~t~<l. Using the maximum princi- 

ple, and (9), we find 

U_ t <~ U t <~ V t ,  

where v' is the harmonic function in f l  which equals q~t on 0g). Note that v t need not be 

admissible. Clearly [Vtlc,<~C for 0~<t~< 1. 

Consequently,  for the interior normal derivative at any point on 0 ~ ,  

t t t 
U_ v ~ U v ~ V v. 

Thus in each theorem we have lul<~C and 

IVul-< c on oQ. (4.3) 

(1) These results make use of the purely interior estimates of the form (4.1) due to L. C. Evans and 
simplified by N. S. Trudinger; see the references [12], [13] and [16] in our paper [2]. 
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Ignoring t we will derive further estimates for the admissible solution of (1). 

Differentiating the equation with respect to xj we find 

Luj= ~j, 

where L is the linearized elliptic operator 

L = F.a 0ik. 

So 
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ILujl <~ c .  (4.4) 

Using the concavity we find for our subsolution _u satisfying (2.1), 

F(u_u) <- F(uu)+L(u_- u) 

so that, by (2.1), 

Consequently 

L(u_-u) I> 1. (4.5) 

L(C(u_-u)+uj) >~ 0 

and this implies that 

C(u_-u)+_u i 

takes its maximum on the boundary. From (4.3) we then conclude (4.2). 

In the next sections we will establish the a priori estimates 

luel ~< C1 on 0~.  (4.6) 

Using (4.5) we conclude this section by establishing 

luuI ~< Cz in g). (4.7) 

From (6), and the fact that F(u~)=q,t<~q,, it then follows that the set of values of 2(u~) 

lie in a compact subset of F and hence that L is uniformly elliptic. 

To prove (4.7), let 

E ' -  
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be any fixed directional differential operator. Applying ar twice to the equation (1) we 

find: 

LOcu = 0r ~o 

LO~ u ~ o 5 ~; >I - c ,  

the second being a consequence of the concavity of F (as in [1] and [2]). From (4.5) it 

follows that 

c(u_-u)+a~u 

takes its maximum on 0f~. By (4.6) we infer that 

O2r in 

(with a different constant (7). 

This is true for every such directional derivative. From Au>0 we may infer that for 

any such operator we also have 

-a~u<.(n-1)c 

so that 

In particular 

Taking 

we conclude that 

and (4.7) is proved. 

la~ ul ~ (n-- 1) C, 

lu.I ~ ( n -  1) C. 

a ~ = - - ~ l  (a,.+a.) for i~=j 
V~-  - J  

luuI ~ (n -  1) c 

5. Estimates for some second derivatives on the boundary. 

Proofs of Theorem 1 and of Theorem 2 (a) 

In this section we will estimate some second derivatives at any boundary point. As in 

the proof of Proposition 1.3 we may suppose the boundary point is the origin, that the 
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positive x. axis is interior normal there and that the boundary is locally represented by 

(1.7). As before we find at the origin--assuming 9 has been extended smoothly to 

with 9 . ( 0 ) = 0 - -  

uo4~=9o~-u,~o~, a, f l<n .  (5.1) 

Thus we have 

lu~a(O)l ~ c,  a , p < n .  (5.2) 

We will establish next the estimate 

lu~,(0)l-< c for a < n (5.3) 

in Theorems 1, 2 or 2'. The proof is an extension of the argument in [1]. Observe first 

that since F depends only on  the eigenvalues of uq it is invariant under rotation of 

coordinates. It follows that for the operator 

xiaj-xj~i,  i 4=j, 

which is the infinitesimal generator of a rotation, we have 

L(X i~ j - -X jOi )  U = (Xi~j--XjOi)  ~3. ( 5 . 4 )  

By subtracting a linear function we may suppose u = 9 = 0  and ua=9p=0 at the 

origin for fl<n. For a<n let 

T = aa+xa(O) (xa a , - x ,  aa), 

so that on aft ,  near the origin, 

T ( u - 9 )  = ( a~ + e~ a.) ( u - 9 )  + O(Ix'l z) = O(Ix'12). (5.5) 

From (4.4) and (5.4) it follows that 

IL(Tu)I <~ Co 

and 

IZ(T(u-9))l <~ Co+Co ~ F,,,. (5.4)' 
i 

We are now going to make use of the condition (10), according to which we may 

choose 6>0 sufficiently small and R sufficiently large so that 

(~1-26, ~2-26 .. . . .  ~ , -1 -26 ,  R) E F. 

19-858289 Acta Mathematica 155. Imprim~ le 20 Novembre 1985 

(5.6) 
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The numbers 6 and R may be fixed so that this holds for every point on 0R. Near the 

origin set 

= ~+ ~ IxlZ; O 
I 

where 

,~o-26 x2 + Rx2_x~. 
~  2 2 

a < t l  

Set 

w = A v - u  = Ao-u+ A6 ixl2, (5.7) 
2 

A will be chosen large. In fact, by concavity, 

L(Aty- u) >~ f(2(Acriy))-F(uu). 

By (5.6) and condition (8) we may choose A so large that 

f(2(Aoo)) >t Co (5.8) 

where Co is the constant in (5.4)'. In addition we have 

L A62 Ixl~= a6 Z Fu,,. 

and thus for A sufficiently large (depending on 6, which is fixed) we have (by (5.4)') 

t w  >I ItT(u-q~)l. 

Hence in the closure of 

Be = Q n (Ixl < ~), 

the function w+T(u-qD) attains its maximum on OBj. 
We will choose e small and then A sufficiently large so that 

It then follows that 

so that (5.3) holds. 

w+_T(u-q;)<~O on OBj. 

lua.(0)-~a.(0)l ~ Iw.(0)l, 

(5.9) 
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So 

w+ Tu<~Av+C 

<-a(c,x 
~A(Ci x2n-Xn) q-C 

in our case 2, where C1 depends on 6 and R. 
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To prove (5.9) consider first OB~ N 0f~; there we have 

6 v~-TIx'12 

if e is sufficiently small (depending on 6 and R). Hence by (5.5), 

- ~ Ix'12+Clx'l 2 ~ o w-'l- T(u--qD) 

for A sufficiently large. 

On OB~ n Q we distinguish two cases. 

Case 1.�89247 = ( R + a ) ( ~ 2  ix,12). Then 

w+_Tu<~Av+C 

z z / 

_< a 

since we are in case 1. Thus 

w+ Tu ~ - ~ Ix'12 +C <~ - c  I Ae2 +C 

for sufficiently small e, with a positive number c1 (depending on 6 and R). When 

ctAe2>~C w e  obtain w+ Tu<_O. 

Case 2. �89 On this portion of aB, flfl we have 

xn>-c2e with c2>0. 
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If ec1<1/2 it follows that 

w+_ Tu ~ A C-Tx.. 

Now fix e>O to satisfy all the requirements we have made. Then in this case we find 

A 
w +  Tu<~ C---~c2e 

~< 0 for A sufficiently large. 

I f  we finally fix A (depending on e) to satisfy all the requirements we have imposed, we 

obtain (5.9) and hence (5.3). 

To complete the proofs of  Theorems 1, 2 and 2' we have to establish the bound 

lu..(0)l ~< c.  (5.10) 

At the origin, E,~<,,U~,a+Un,,>O by (9) and so u,,,,(O)>~-C and we have only to 
prove 

m = u,,,,(0) ~< C. (5.11) 

We first prove this for Theorem 1. We may suppose u=q~=0 on a f t .  Then we have 

(1.8) at the origin, i.e. 

ua~ = - u ,  ~a 6 ~  (5.12) 

Since, by (9), Au>6  in f we see by the Hopf  lemma that 

-u , (0 )  I> a > 0 for some positive constant a. 

Suppose that u,,,,(0)=m is very large. We may then apply Lemma 1.2 and infer that the 

eigenvalues of  (u U) are 

2 a =-u , (0 )ga(0)+o(1) ,  for a < n  

It follows from (10) and (7) that  

f(Jl~ . . . . .  ,t,,) > m a x  g, 

which is a contradiction. Hence (5.11) holds with some constant C, under control. 
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Consider next Theorem 2 for F of type 2. It follows from (5.2) that at the origin, 

12~l~C for a < n .  

Since F is of type 2, it follows that for some constant M, depending on C and on F, 

(21 . . . . .  2n-l ,M) lies in a compact subset of F. Using condition (7) we infer that at the 

origin, 2,, is bounded from above. Hence so is u~,,(0) and (5.11) is proved in this case. 

Theorem 1 is completely proved and Theorem 2 is proved for F of type 2. 

6. Completion of the proof of Theorem 2 

It remains to prove (5.11): 

m = u,,,,(0) ~< C. 

Our proof is rather tricky and longmthere should be a shorter one. 

Let F' denote the projection to 2'=(AI . . . . .  An-,) of F. Since F is of type 1, F' is an 

open convex cone in R n- '  which is not all of R ~-1. At the origin we have (5.1) and 

u=qg=0, ua=q~a=0. (From now on derivatives are computed at the origin.) Using 

condition (10) we see that for large positive and negative t, the eigenvalues 2' of the 

( n - l )  by ( n - l )  matrix {q0~+tpo~} belong to F' and the complement of f" respective- 

ly. Let to be the first value of t as we decrease t from + o0 such that 

where 

2'(0o~) E aF', 

o = �89 (~0o~(0) + to 0o~(0)) xa x#. (6.1) 

Then {tol<~C, for C under control. Without loss of generality we may suppose {oa#} to 

be diagonal with the diagonal elements ~,~<3~2~<...~<2,,_1. 

Suppose m is very large. By Lemma 1.2 the first n -  1 eigenvalues of uo(O), 2'(uo), 

are given by 

From (5.1): 

Z'(uo~)+o(1). 

uo, o = q0~-un Q~, 

it follows that -u, ,  cannot be much lower than to. Our aim is to establish the estimate 

- u,,(0) ~> to+r/ (6.2) 



286 L. C A F F A R E L L I .  L .  N I R E N B E R G  A N D  J. S P R U C K  

for some fixed r/>0. From the definition of to it then follows that 2 ' (u~)  is in F'  and its 

distance to OF' is greater than some positive constant r/'. If m is very large, 2'(ut/) is 

close to 2 ' (u~)  and so its distance to OF' is greater than r/'/2. So for some constant M 

under control, (2'(u0), M) belongs to a compact set in F. But condition (7) then yields a 

bound on 2,, and hence on m=u,,(0).  

On af~ near 0 we have (recall that derivatives of tp and ~ are evaluated at the 

origin, and summation over Greek letters goes up to n-1) :  

I - -  o t ~ _ _  _ t  "~ n t  x a t e ' L 1  u = cp = ~w,~x~.~o+to~V~x~,o-e~x',+,-~x'j+,,~.~'j. . (6.3) 

where P is a homoffeneous cubic in x' and 

At 2 ' (0~)=~,  the cone F' has a plane of support, i.e. 

F ' l i e s i n { E # a ( 2 a - ~ ( a ) > 0  }, E # a = l .  

(6.4) 

(6.5) 

We shall make use of 

LEMMA 6.1. I f  fq<~...<<,ft,_l, there  is such  a p lane  of support wi th  

f l l ~ g 2  ~ ' ' '  ~ f l n - - I  ~ > 0 "  (6.6) 

Proof .  Since F' contains the positive cone in R "-1 it is clear that for any plane of 

support, all #a~>0. Suppose first that the components of ;( are all unequal, i.e. 

~(1<~(2< .... By symmetry (XE,X1,,(3 .. . . .  ;(,1) belongs to F and hence 

>I o 

and s o  ~ l ~ f 1 2  o Similarly we find (6.6). To prove the lemma in general it suffices to show 

that any point ;(E aF' can be approached by points on aF' with no two components 

equal. If this were not the case, then near ~, the boundary aF' would have to lie in a 

hyperplane of the form 2j=2k, say 2 1  =22. But then near ,(, aF' must coincide with that  

hyperplane, and the hyperplane is then necessarily a plane of support of F'. Thus in F' 

we would have, say, 21-22>0 D contradicting the symmetry of F' in the 2's. The 

lemma is proved. 

Since t~EOF'  for t>O we have E/.ta/(a(t-1)~>O for all t>O and hence E#a)~a=O. 
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From now on we may assume: 

F' lies in { E / ~ 2 ~  > 0} ,  with/zl ~> ... ~>/zn_l ~> O, and E / z ~  =1 .  
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#a ~a = 0. 

(6.7) 

We will also make use of  

LEMMA 6.2. Let  A={ae) be a square n x n  symmetric matrix with eigenvalues 

AI<~...<.An. Let/~l~>...>~p~>0 be given numbers. Consider an orthonormal basis o f  

vectors b I . . . . .  b ~ and set 

a i = V ~ b  i, l<.i<.n.  

E <Aai" ai) >~ E l z l ) ' r  
i 

In particular, we have 

Then 

E giaii >~ E ['~i~i" 

The lemma is a special case of  a result of M. Marcus [7]. For  convenience we 

include a short proof. 

Proof. We may suppose the matrix A is diagonal. Then if i i i b =(b I . . . . .  bn), we have 

J-- E (Av,. v,)= E E 

where the matrix _ i2 c U- (b)) is a doubly stochastic matrix. So the minimum over the 

convex set of all doubly stochastic matrices of E cij/~i2j is achieved at an extreme 

point, i.e., at a doubly stochastic matrix where each element is either 0 or 1. Thus we 

find 

J >E JoJ 

where (Ol . . . . .  on) is a permutation of (#1 . . . . .  Pn). By induction on n it is easily verified 

that minr .  Ajoj for such permutations is achieved by E ;~jgj. Q.E.D. 
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Returning to our domain fl near 0, let S be a surface represented locally by 

xn=o(x')-r-~--tx'l 2 with 0 < r  small, 
2 

(6.8) 

and let d(x) denote the distance of x E f~ from S. At the origin the eigenvalues of d U are 

(not in order) 

A,(du) = ( r - x ~  . . . . .  r - u , , _ ~ ,  O) (6.8)' 

By our critical hypothesis (10), (~C 1 . . . . .  Xn--1) is in F', and hence for fixed positive r 

sufficiently small we have 

i~ a xa-~" t> a > 0, (6.9) 

for some fixed positive constant a (independent of the particular point on aft  which we 

have chosen as origin). This holds for any ordering of the ua. We take r to be so fixed 

from now on. 

For a = l  . . . . .  n - I ,  let ba(x) be smooth orthonormal vector fields in ~ near 0 

tangent to the level surfaces d---constant (i.e., orthogonal to Vd) and such that ba(O,x,,) 
is the unit vector in the x~ direction. Set 

aa(x)=V~"~ba(x), a = l  . . . . .  n - I ,  and A = ~ a ~ a ~ 8 i 8  j. (6.10) 
i , j  a 

Recall that o~a is diagonal, with eigenvalues ;(, and that also E/A~,(a=0. For h 

small let 

In Dh, where for h<.ho small, 

D h = { x E  ~~l [x ' l  < h ,  x n < h2}. 

we will employ the barrier function 

where 

d ~  < C~ h 2, (6.11) 

o = w + ~ ( C o l x ' 1 2 - x n ) ,  

, , , "t" , 2  M 2  

(6.12) 

(6.13) 
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Here C o is fixed so that COIX'I2--Xn~O on a~ n Dho; l(x') is a suitable linear function 

of x', M and r/will be chosen, respectively, as large and small positive constants, so 

that we will have 

II <~ V Off ODh, (6.14) 

and at every point in Dh: 

;t(v~) ~ i" = {Z e r I f(;t) I> ,Po). (6.15) 

According to the maximum principle, Lemma B, it then follows that 

u<~v inDm 

which yields (6.2). 

With the a a as in (6.10) we will first determine l(x') and then choose M large so as 

to guarantee that for h small: 

u<<.w on a~nDh,  (6.14)' 

u--w<~--I o n  aDhfl~-~, (6.14)" 

and 

Dh, 

Aw < 0 in Dh. (6.16) 

Inequality (6.16) has the important consequence: it implies that at every point in 

2(W~/) ~ F (6.17) 

independent of the size of M. For if v~<<....<~v, are the eigenvalues of wo(x) then we 

know by Lemma 6.2 with/~,,=0 that 

~ # a V a < 0  

and hence (vl . . . . .  V,-l) is not in F'. 

Once/(x'),  h and M are fixed so that (6.14)', (6.14)" and (6.16) hold, then, by fixing 

r/sufficiently small, we see that (6.14) and (6.15) hold and we are through. 

To establish (6.16) observe first that by Lemma 6.2 and (6.8), (6.9), 

- A d =  - E  doa~a~>~a at the origin. (6.18) 

20-858289 Acta Mathematica 155. Impdm6 le 20 Novembre 1985 



290 L. CAFFARELLI, L. NIRENBERG AND J. SPRUCK 

near the origin we find 

l = l(x') [ (Ad) (O)-r Z lu,~] - 2r Z l.z~ laxa + O(]xl2). 

(Here the constant in O([x[ 2) depends on the bound on the coefficients of l.) By (6.18), 

we have (At/)(0)~<-a, and it follows that the lemma holds with 

l(x') = Z [(Ad) (0)-r-2v~a]- 'maxa.  Q.E.D. 

With the function I determined, we now require M to be large enough to ensure 

(6.16). Namely, by (6.19), and the lemma, we have (recall a a is perpendicular to Vd) 

Aw ~ C[xl2 + MdAd. 

From (6.7) we see that Ao=0, at (0,xn). 

Hence at any point in Dh w e  have 

A o  = m~(x')+Oflx'l  2) 

where m~ is a linear function. Furthermore we find in Dh,, 

A P  "= m2(x')-.l.-O(]x'] 2) 

where m2(x') is linear. Thus for m(x')=ml+m2, in Dh, 

[A(o+P)-m(x')[ <~ C[x'[ 2. (6.19) 

The linear function l(x') in (6.13) is now determined via the following lemma (recall 

(6.8)): 

LEMMA 6.3. Let m(x') be a linear function with coefficients bounded by K. There 
exists a unique linear function l(x') such that 

F 
Here C is a constant independent of  K, and the coefficients of  I are bounded by CK. 

Proof. Set l--~ laxa. Since the vectors a a are perpendicular to Vd we see that 

A(ld)=lAd. If we expand 
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For h sufficiently small we have Ad<~-a/2 in Dh and hence in D~ 

Aw <. Clxl 2- ~ d. 

Since 
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d~co(Ix'12+lx,,[) in Dh for some Co>0, (6.20) 

we obtain (6.16) i.e. Aw<0 in Dh, and (6.17) holds, provided 

M>~ Alto sufficiently large. (6.21) 

Next we establish (6.14)'. On cOQnDh we have for h small, 

Using (6.3), (6.4) and (6.13) we find on Off~ rl/gh, with, as usual, a different constant 

C (under control) 

<~ Clx'14-2 dz <~ 0 u - w  

provided M is sufficiently large, i.e. (6.14)' holds. 

Turn to (6.14)". On ODh f)~'2 we have, from (6.20), 

d >>. Co hE. 

and we now finally fix M (depending on h which has been fixed) satisfying (6.21) and 

the other requirements, so that (6.14)" holds. 

The proof is complete. 

7. Completion of the proof of Theorem 2' 

Here ~p=constant. The proof of the final estimate (5.11): 

m = Unn(0) ~< C, 

is a modification of that of Section 6, and we will use the same notation. At the origin 

we have (5.1) and u=cp=u,~=q~,~=O. 
Let F~ denote the projection to 2' of the convex set 

t o =  {2 Erlf(~.) > ~) .  
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F6 is a convex subset of the cone F'. By condition (8) we see that for any compact set K 

in F' there is a constant t such.that tKcF6. Also tF6~-F~ for all t> l .  

Remark 7.1. If the projection K' to 2'-space of a compact set K in 2-space is 

disjoint from F6 then, for some positive e=e(K), 

K is disjoint from {2 fi Fif(2) t> ~0-e}. (7.1) 

Proof. If not there would be a sequence of points 2 J in K with 2iE F, and f(AJ)---,~. 

Choosing a subsequence converging to 2=(2',  2,,)EK we would conclude that ~.EF 

(recall (6)) and f(A)=~. But then we would have f(X',2n+l)>~p and hence 2'EF~, 

contradicting the fact that 2' has to be disjoint from F6. 

Using condition (8) and (10) we see that for large positive and negative t, the 

eigenvalues 2' of the ( n - I )  by ( n - I )  matrix {~p~+tO~a) belong to F6 and the 

complement of F6 respectively. Let to be the first value of t as we decrease t from + o~ 

such that 

where 

2'(oo~) E ar'~, 

o = �89 (9,r + to,r x, xa. 

This differs from the definition of to in Section 6 since F' has been replaced by F6; 

]toil<C, for C under control. From now on we take t=to in o and without loss of 

generality we may suppose {a~a} to be diagonal with the diagonal elements 
L~2-<...-<;L_,. 

Suppose m is very large. By Lemma 1,2 the first n - 1  eigenvalues of ue(0), 2'(uij), 
are given by 

From (5.1): 

~'(u~)+o(1). 

u ~ =  qg~t~-u,~o~, 

it follows that -un  cannot be much lower than to. Our aim, as before, is to establish the 

estimate 

-un(0) I> to+~/ (7.2) 

for some fixed ~/>0. From the definition of to it then follows that 2'(u~a) is in F6 and its 

distance to aF6 is greater than some positive constant 7'. If m is very large, 2'(u 0) is 
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close to A ' ( u ~ ) a n d  so its distance to aF~ is greater than ~/'/2. But then 

f(2(uo(O)))>~O+e for some fixed e>0, a contradiction. Hence m=u,,(0) must be 

bounded. 

On aft  near 0 we have (6.3) and (6.4). At ).'(o~)=X, the set F6 has a plane of 

support, i.e. 

F~ lies in (E /~a0L-X~)  > O), E / ~  =1.  (7.3) 

Since for any 2' in the positive cone in R "-1, t2' EF~ for t sufficiently large it is clear 

that each pa~>0. Lemma 6.1 continues to hold. Furthermore, since tXEr0 for t~>l, we 

have E/~a2~(t-1)>~0 for all t > l ,  and hence k=E/~a>~0.  From now on we may 

assume 

F~ lies in E / ~ 2 a - k >  0 with #1 ~ "'" ~ # n - - I  9 0  and 

(7.4) 

We will use d and (6.8), (6.8)' as in Section 6. As we have remarked, since 

x=(xl .. . . .  x,-1) is in F', for some t~>l, under control, we have tuEF6. By (7.4), 

t El~a~ca>~k+b>~b for some fixed b>0. Hence for fixed positive z sufficiently small, 

E V a  u a - z  ~> a > 0 (7.5) 

for some fixed positive constant a (independent of the particular point on a ~  which we 

have chosen as origin). 

In 

Dh = {xet llx'l<h, xn<h2}; 

as before, with h so small that (6.11) holds, we will use b a and a a as in (6.10), and the 

operator 

A = E E a~ a~ a i aj. (7.6) 
i , j  a 

Now Ao(0, x,)=k and therefore 

A o - k  = ml(x')+O(lx'12). 
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In place of (6.19) we have 

Im(a+ e ) - k - m ( x ' )  I <. CIx'l z. (7.7) 

With the new value of to we use again the barrier function 

v = w+rl(Colx'12-x,,) (7.8) 

of (6.12), where, as before, 

w = a(x')- t~ x"+P(x')+l(x') ( 2  lx'12-d) + M (7.9) 

Here the linear function I is the same one as in Section 6 m determined by Lemma 6.1. 

We will choose h small, M large and then r/small so that (6.14) holds, i.e. u<~v on 

aOh, and also the analogue of (6.15): at every point in Dh, 

2(vu) r {~ e r I f(2) ~> W}. (7.10) 

As before it follows from Lemma B that u<~v in Dh; (7.2) then follows. 

To prove (6.14) and (7.10) we will establish (6.14)', (6.14)" and the analogue of 

(6.16): 

A w - k < 0  in Dh. (7.11) 

To establish these we follow the arguments of the preceding section. Having deter- 

mined l we have 

L w - k  <~ Clxl2 + MdLd 

and as before, for h small and M large we obtain (7.11). (6.14)' and (6.14)" are then 

obtained as before by taking M sufficiently large. M is now fixed. 

From (7.11) follows the crucial fact that at every point in/gh 

;t(wu) r to. 

F o r i f  v~<~...<~v,, are the eigenvalues of wo(x) then, by Lemma 6.2, 

~ /ua va-k  <~ O in/gh 

and hence (v~ .. . . .  v~-l) is not in F~. Consequently, having fixed M, it follows from 

Remark 7.1 that for some fixed e>0, and every point in Dh, 

z(wu) r {z e r If(X) ~> w-t} .  (7.12) 
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Thus for fixed positive small r/we obtain (6.14) and (7.10) from (6.14)', (6.14)" and 

(7.11). 

The proof of (7.1) and hence of Theorem 2' is complete. 

8. Proof  of  Lemma C 

Observe that for the function g in (17), g(2)=0 is equivalent to 

g(g)= Earg(l+igj)=l~,  IEZ, Itl< 2 ,  (8A) 

and 

1 ~ j = ~ > O .  1+22 (8.2) 

Consequently the set g-l(0) is a complete analytic hypersurface; it may have more 

than one component. No component can be bounded for if it were it would necessarily 

be a compact hypersurface. Then 2~ would have a maximum on it, and at that point, Vg 

would be parallel to the ;traxis---contradicting the fact that g2=VO there. 

Case 1. n = 2 k + l  is odd. 

(i) For any 2 in F§ the positive cone, arg(l+it2j) varies monotonically from 0 to 

~/2 as t goes from 0 to +oo. So there are exactly k positive values of t, O<tl<t2<...<tk 
such that g(t2)=O, namely 

E arg(l+ita2j)=a~t, a= 1 ..... k. (8.3) 
J 

The functions ta are continuous functions of ~ and decreasing in each 2j. The corre- 

sponding points ta;~ lie on k different components of g-l(0). The points - t a x  lie on k 

more components. In addition there is the component containing the origin, on which 

arg~t(l+/2j)=0. If we take 2=(1 . . . . .  1) we thus obtain n components of g - l ( 0 ) ;  it is 

clear that each one is symmetric in the ;ti. 

To see that there are no other components, observe that by (8.2), any component S 

of g-l(0) may be represented as a graph over an open subset S of the plane E 21=0. We 

claim that S is the whole plane, for if not, there would be a sequence of points/~J in S, 

with/~J---~g, and a sequence of real numbers d with ItJl---~ oo, say d---~+oo, such that 

2 j =/~J+ t J(1 . . . . .  1) E S. 
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But then g(2Y)--~n~r/2---contradicting (8.1). Therefore, S contains a point on the diag- 

onal and must then be one of the n components described above. 

(ii) For Fl+ = {2 E F+ [IA[= 1 }, consider the smooth hypersufface 

Z = (tk(2)2, for e rl+). (8.4) 

We claim that Z is an entire component of g-l(0). This follows from the assertion: 

ffAEF~+, 4---> OF+ then tk(2)---> + ~ .  (8.5) 

(8.5) is easily proved: Suppose a sequence 2Jin F~+ tends to /zEaF+ and 

tJ=tJk(AJ)--->S< oo. We have 

arg (1 +itJ2~)+... +arg (1 +itJ2~) = n -  1 --T--~= k~. 

Since the smallest components 2~ tend to zero we find 

n -1  arg(l+islz2)+'"+arg(l+istz~)= 2 :r. 

But this is impossible since arg(l+islzj)<:d2 for eachj .  

Since Z is a complete hypersurface lying in F+ it is the boundary of the unbounded 
set 

G =  {t21,~ r~+, t >  tk(A)}; (8.6) 

clearly 0 ~ t~. 

(iii) Z is strictly convex at every point. 

To verify this it suffices to show that at any point on Y., for any nonzero vector 
perpendicular to Vg, the quadratic 

is definite. Differentiating (8.2) we find 

~ j m ~ i ~ m = _ 2 ~  2j (l+F)2. (8.7) 

The right hand side is dear ly  negative definite in F+ and (iii) is proved. 

(iv) We may now conclude that G, given by (8.6) is convex and satisfies the 
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conditions (11), (12) of Theorem 4 with the cone F=F+. It is clear that F is F+; 

condition (11) follows from (8.2), and condition (12) also follows easily. 

Case 2. 2<n=2k+2  is even. 

(i) As before, for 2GF+, there are k values of t>0, tl . . . . .  t k such that g(G2)=0, 

i.e., 

arg H ( l + i t ~ 2 ) = a ~ ,  a =  1,. . . ,k. 

We also have g ( - G 1 ) = 0 ,  and of course g(0)=0. Again it follows that g-l(0) has 

exactly 2 k + l = n - 1  components each of which is a smooth complete hypersurface 

which is symmetric in the 2;. 

(ii) Consider now the convex cone F=the connected component containing 

(1 .. . . .  1) in which o ~-~) is positive. This is described in Section 1; it contains F+. 

Claim. For every 2 6 F there is a positive t=t k so that 

-ii--I" n - 2  
arg H (l+itlj) =/car = :r. (8.8) 

2 

Proof. We already know this for i fi F+ so we need only consider 2 E r \ r + .  For 

such ;l--(21 .. . . .  2n) with 21~<22 .... necessarily 21-..<0<2z. For if 21~-<2z,.<0 then, since, 

in F, o ~n'~) is increasing in each i i  (see Section 1), it would follow that 

o~"'~)(0, O, 23 . . . . .  2.) > O, 

but in fact this is zero. 

Suppose 2~=0, then 

arg H (1 + itlj) = arg H ( 1 + itlj) --> 
1 2 

so clearly there is a t>O for which (8.8) holds. Suppose 2 1 ( 0 ;  in this case 

n 
H n--2 

lim arg (l+it2j)= 2 ~' (8.9) 
t---~+oo I 

so we have to examine this case a bit more closely. For large t we have 

H (l+it2j) = i"f' H 2J +i"-lt"-'~ 

=i'-2ptn(l+~otn-l)(1)+O(t-2)) 
(8. lO) 
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where p=-II2j>O. Since O(n--l)(,~)>0 we see that argII(l+itj)>(n-2)/2 for t large, 

and so for some t>0 we have (8.8). 

Next we prove the analogue of (8.5). Set F I = F n S  "-1. 

I f ) iEF  l, 2-->aF, then tk(]L)---~ +o0. ( 8 . 5 ) '  

As before this is easily proved. If it is not true there is a sequence 2 j E F ~ tending to 

gEOF and tJ=dk(AJ)--*s<o o, such that argII(l+is/zr)=kx. The polynomial in t, g(t/~) 

then has k positive roots. Their negatives are also roots, as is t=0. So g(t/z) has 

2 k + l = n - 1  roots. However/zEOF, and so o~"-l)(/z)=0. From (8.10) we see that 

g(tlz) = Im I-[  (1 +itlzr) 

is a polynomial of degree n - 2 ;  it cannot have (n -  l) roots--(8.5)' is proved. 

We conclude that Z = {tk(X)2[A E F 1} is a complete hypersufface lying in F. 

(iii) To show that 

G = {tAlAE1 "q, t>tk(A)) 

satisfies the conditions of Theorem 4, and hence to conclude the proof of Lemma C, we 

prove finally 

LEMMA 8.1. 5: is strictly convex at every point. 

Proof. We must prove that on Z, 

gjm ~j ~m is definite if ~ ~j ~j = 0, ~ * 0. 

According to (8.7) we must show that 

Q : = ~  (1+4)2 > 0  f f ~  1+2~ = 0 , ~  #:0. (8.11) 

If all Aj>0 there is nothing to prove. So we need only consider the case 21~<0<A2 .... 

Then 

1 
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and so (a, fl always sum from 2 to n) 

(l+X~) 2 
- - ~ < E  ~2)~a 1 

Hence 

Now 

o'(n-l)(~) ~ aI~>l ~a" ( 1"~-~1 E ~ ) �9 

It follows that 

Q ~  ~ ~ --7-~,2 > o. 
]-[Aa I+A~ 

a>l 

(8.11) and also L e m m a  C are proved. 

Remark. No other component  S of g-l(0) satisfies conditions (11)-(13) on Y. For  if 

it did then it would lie in the half space E Ai>ns with (s, .... s) on S. But for large t, the 

point (t . . . . .  t) lies in the convex region G bounded by X, and it would then follow that 

g(t . . . . .  t, An) has at least two roots, corresponding to points on S and on X - -  contra- 

dicting the fact that g is linear affine as a function of ;tn. 

8. An example 

In the disc ~=r=lx]<l  in the plane consider the convex function 

u = r2-1 + ~(l-r2) 3/2. 

For a function of  r, the eigenvalues of  the Hessian matrix a r e / / a n d  idr. Thus 

21 = __h = 2 - (1 - r2 )  1/2 ~ 1, 
r 

)12 = 2-(1-r2)V2+r2(1-re) -v2 I> AI 

i.e. 

)~2 = (1-r2)-v2(1 +2(1-r2)U2-2(l-r2)) 

(9.1) 
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Given any positive integer k, let g(s) be a C ~ concave function defined for s>0  and 

The symmetric function 

g(s) > 0 

g(s) = 2klog s, for s I> 1, 

g(s) ---> - oo as s --> 0. 

f(Ap 2 2) = 2 - e -g(Al)-g(A2) (9.2) 

is concave and satisfies fai>0, i= 1,2. 

Thus the nonlinear partial differential operator for functions u of  two variables, 

F(uo) = f ( 2 1 ( u q )  , 2 2 ( u u ) ) ,  (9.3) 

is elliptic at every strictly convex function u. For  u given by (9.1) set 

F(uu) = ~p(r). (9.4) 

Since 1~<21<~A2 for this function, we find 

~p(r) = 2--(2122) - 2 k  ~ 1. 

NOW )p E C | for r <  1 but not in r~< I. In fact for r close to 1 we have 

21 A 2 = (I - r2)- v2 (2+ 3(1 - r2) 1/2- 6(1 - r2) + 2(1-1"2) 3/2) 

and therefore ~p is in Ck(~) but not in c k + l ( ~ ) .  

Thus the function u given by (9.1) is a solution of  

F(uo) = e/E Ck(~) 

u = 0 o n  Of~, 

and for F=F+ ,  the positive cone, we find that  conditions (2), (3), (5) and (6) hold. 

Conditions (7) and (8) do not. Furthermore u, the unique convex solution in class 

C2(V~) n C(D), belongs to C1(~) but not to C2(~). 
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