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Introduction 

Let 0: M-- ,S"  be a minimal immersion of a compact  surface into a unit sphere. 
Then, the linear functions of 0 are eigenfunctions for the Laplacian of M 
corresponding to the eigenvalue 2=2 .  The main purpose of this paper is to 
study those minimal surfaces for which 2 is exactly the first non-zero eigenval- 
ue of its Laplacian. This kind of immersions have a peculiar behaviour among 
all compact minimal surfaces of the sphere and they appear naturally when 
one considers different geometric problems, as Li and Yau have shown in [6]. 
The methods that we use in this paper are based, for the most part, on [6]. 

It is known that the only metric on a 2-dimensional sphere admitting a 
minimal immersion into S" by the first eigenfunctions is the standard one (this 
follows, for example, from the fact that the multiplicity of the first eigenvalue 
for such a metric is at most three, see the Cheng work [3]). Our first result 
shows that it is possible to extend this property for an arbitrary compact  
surface, in the following way: 

"For  each conformal structure on a compact surface, there exists at most 
one metric admitting a minimal immersion into a unit sphere by the first 
eigenfunctions". 

As a consequence, the class consisting of such immersions is not too big. 
This result enables us to characterize the equalities in some inequalities ob- 
tained by Li and Yau which relate the conformal area of a Riemannian 
surface, the first non-zero eigenvalue of its Laplacian and the total mean 
curvature for a surface in the Euclidean space. 

Since the real projective plane has only one conformal structure, the only 
metric on R P  z admitting a minimal immersion into a sphere by the first 
eigenfunctions is the standard one. Thus, the metrics on S 2 or R P  2 which have 
this type of immersions are completely classified. Evidently, we are interested 
in extending this classification for other compact  surfaces. Besides S 2 or R P  2, 
the torus has the simplest family of conformal structures. The square and 
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equilateral flat tori are the only known examples of Riemannian tori admitting 
a minimal immersion into a sphere by the first eigenfunctions (these immer- 
sions lie in S 3 and S 5 respectively). For this surface we obtain the following 
partial classification result: 

"The only minimal torus immersed into S 3 by the first eigenfunctions is the 
Clifford torus". 

This result gives us a relation between the Lawson conjecture, which asserts 
that the only torus minimally embedded into S 3 is the Clifford torus, and the 
Yau conjecture, which says that each minimal embedding of a compact surface 
into S 3 is by the first eigenfunctions. Also, note that, if the Yau conjecture is 
true, it follows from our first result that two compact surfaces minimally 
embedded into S 3 are isometric provided that they are conformally equivalent. 

Now, it seems natural to study, for a fixed conformal structure on a 
compact surface, the problem of existence of metrics admitting this type of 
immersions. We will show that, in general, one cannot assure such existence. 
More concretly, we will prove the following fact: 

"There exists conformal structures on a torus for which there are no 
metrics admitting a minimal immersion into any sphere by the first eigenfunc- 
tions". 

This follows from certain results having their own interest that we will 
point out in the following. Li and Yau estimate the conformal area of a torus 
in terms of the area and the first eigenvalue of the only flat metric existing for 
each conformal structure. We improve their bound for the conformal area and 
this enables us to enlarge the family of conformal structures on a torus for 
which the Willmore conjecture is satisfied. Also, we compute the conformal 
area for a class of rectangular tori and, finally, we prove that, for these 
conformal structures, there are no metrics which admit minimal immersions by 
the first eigenfunctions. Since the conformal area of these tori is less than 27t 2, 

it follows that the estimate of the total mean curvature of a torus in R" in 
terms of its conformal area obtained in I-6] is not sufficient to verify the 
Willmore conjecture in the general case. 

I. Preliminaries 

Let S" be the n-dimensional unit sphere, D "+ 1 the open unit ball bounded by S" 
in R "+ 1 and G the conformal group of S". For each point geD "+ 1, we consider 
the map, also denoted by g, g: S"--*S" given by 

(1.1) g(p)= 
p + ( # ( p , g )  +2)  g 

2((p, g)  + 1) 

for all peS", where 2 = ( 1 - [ g [  2) �89 # = ( 2 - 1 ) [ g 1 - 1  and ( , )  denotes the usual 
inner product on R "+1. Then g is a conformal transformation of S" which can 
be extended to an isometry of D "+1 endowed with the hyperbolic metric, that 
carries the origin of D "+1 on the point g. Moreover, each transformation of G 
can be expressed by To g, where T is an orthogonal transformation of S" and g 
is given by (1.1) for some geD "+1. 



Minimal immersions of surfaces by the first Eigenfunctions 155 

The differential map g ,  of g is given by 

(1.2) g , (v )=2-Z( (p ,g>+l ) -Z{2(<p ,g>+l )v -2<v ,g>p+(v ,g>(1- )Olg l -2g} ,  

where v is a tangent vector to S" at p. So, for such two vectors v and w we 
have 

1 _[g12 
(1.3) <g,(v), g , (w))  - (<P, g> + 1) 2 (v, w>. 

Let M be a surface. We consider two conformal  metrics ds  2 and ds 2 on M 
related by ds2=2Fds  2, where F is a regular positive function. If A and dM 
(resp. A 1 and dM1) are the Laplacian and the canonical  measure on M 
corresponding to the metric ds  2 (resp. ds2), one has the relations A I = ( 2 F ) - ~ A  
and dM~ = 2 F d M .  Now, if M is compact  with metric ds 2, for each branched 
conformal immersion 0 :  M + S "  we can consider the area function A: G-+R 
which maps a conformal  t ransformation h of S" on the area induced from the 
immersion h o 0. We will denote it by A(hotfi) or simply A(h). Since the area 
function is invariant under or thogonal  transformations of  S", we can ourselves 
restrict to conformal  t ransformations of the type (1.1). So, the area function can 
be defined on the unit ball, A : D ' + I - + R .  F rom (1.3), we obtain for each 
g e D  "+l 

(1.4) A(g)=�89 S 1 - Ig l  2 [VOl2dM. 
M ( @ , g > + l )  2 

Note  that, if the immersion 6 is isometric, then LV612 =2 .  
F rom the first variational formula for the area function or by a direct 

computat ion,  we have that the origin of D "+~ is a critical point  for A if and 
only if 

(1.5) ~ ~[V~I 2 dM =0.  
M 

In the same way, the second variational formula at the origin, in the 
direction of veR "+ ~, is given by 

(1.6) ~ {3 <0, v> 2 --[v[2} ]VO[ 2 dM. 
M 

As consequence of  (1.6), one can see that the function A: D "+ 1..~R satisfies 

(1.7) AA=�89  A, 

where A is the Laplacian corresponding to the hyperbolic metric on D "+ 1 with 
constant  curvature - 1 .  The behaviour  of A at the infinity, that  is, when 
g~OsS",  has been studied by Li and Yau. In fact, we have A(g)--*4kg where k 
=0 ,1  .. . .  is the number  of points of M that are mapped  on - 0  by the 
immersion 0. 

Suppose that 0 :  M ~ S "  is an isometric immersion. Let / t  and H be the 
mean curvature vectors of M in S" and R "+ 1 respectively. Then 

(1.8) ~ ]HI2 d M =  ~ 1ttl2 dM + A(M). 
M M 
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It is well-known that the left side in the above equality is invariant under 
conformal transformations of G. It follows that, if qJ is a minimal immersion, 
the corresponding area function attains its maximum at the origin of D "+ 1 

Let M be a compact surface endowed with a fixed conformal structure. The 
conformal n-area of M, that we will denote by A~(M, n) is given by 

A~(M, n) = inf sup A(g o ~9) 
O g ~ D "  + 1 

where ~ runs over all non-degenerate conformal mappings of M into S'. The 
conformal area Ac(M ) is defined by At(M)= infA~(M, n), n > 2. 

n 

Now, we will point out some other results obtained by Li and Yau in [6]. 
Let M be a compact  surface with metric ds 2 and canonical measure dM: 

(1.9) "If ip: M--,S" is a conformal immersion, then there exists geD "+~ such 
that ~ g o ~ dM = 0". 

M 

If 21 denotes the first non-zero eigenvalue of the Laplacian, then 

(1.10) 21 (M) A(M) < 2 Ac(M, n). 

Moreover, equality holds if and only if M admits a minimal immersion into a 
n-dimensional sphere which is given by a subspace of the first eigenspace. In 
this case 2At(M) = 21(M) A(M). 

If ~b: M---*R" is an isometric immersion into the Euclidean space with mean 
curvature vector H, then 

(1.11) ~ IHI2 dM> Ac(M). 
M 

Let ~b: M ~ S "  be an isometric immersion and let H and / t  be the mean 
curvature vectors of M in R "+1 and S" respectively. Then, we have A $ = 2 H =  
- 2 5 + 2 / t .  For a fixed geD ~+1, we define f :  M-~R by f = ( O , g > + l .  A direct 
computat ion gives 

A l o g f = f  2 { - 2 ( ~ b , g ) 2 - 2 ( ~ b , g ) + 2 f ( / 4 ,  g ) - l g r l 2 } ,  

where gr is the tangential part of the vector g with respect to M. Then Igr[ 2 
= igl2_ igN]2_ (g, ~b>2, gN being the component  of g in the normal space to M 
in S". Hence 

2 f  (lq, g) +lgNi 2 
A log f =  - 1 + -t f2  

Integrating this equation and taking into account (1.4), we get 

(1.12) A(0) = A(g) + ~ 2((0 ,  g)  + 1) </I, g> + [gNI2 
((6,,g> + 1) 2 dM. 
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2. Minimal immersions by the first Eigenfunctions 

Let M be a compact surface. If ds~ is a metric on M, we will denote by A k, 
dMk, 21(Mk) and A(Mk) the Laplacian, the canonical measure, the first non- 
zero eigenvalue and the area corresponding to ds~. 

Theorem 1. For each conformal structure on a compact surface, there exists at 
most one metric which admits an isometric immersion into some unit sphere by 
the first eigenfunctions. 

Proof. Suppose that there exist two conformal metrics on M, say ds 2 and dsZ2, 
admitting minimal immersions by the first eigenfunctions into some unit 
spheres. Let Ok: M ~ S %  k=  1, 2, be such immersions that we can consider full. 
Put ds 2 = 2F z ds 2, F 2 being a positive function. 

By using (1.9) we have geD "+1 such that the conformal immersion 03 
=go  02 :M~S"2  satisfies 

(2.t) ~ 03riM1 =0.  
M 

We denote by ds 2 the induced metric on M from the immersion 03 and put 
dse=2F3ds  2. 

From (2.1) and using the minimum principle for 21, we have 

(2.2) 2* (M1) A(M *)= 2a(M1) 5 [0 312 dM x 
M 

~ 1~70312dM1-----~ [ V 0 3 1 2 d M 3 ,  
M M 

where the last equality holds from the conformal invariance of the Dirichlet 
integral. 

Since the left side in (1.8) is invariant under conformal transformations of 
the sphere, we have that 

(2.3) ~ IVO312dM3=2A(M3) <2 ~ IH312dM3 =2 5 [H2lZdMz, 
M M M 

where H k is the mean curvature vector in the Euclidean space associated to Ok. 
Now, one has the relations A 2 0 2 = 2 H 2 = - 2 1 ( M 2 ) 0 2  because the immersion 
02 is by the first eigenfunctions, and so 

(2.4) 2 5 IH212 dM 2 = 21 (M2) A(M2). 
M 

From (2.2), (2.3) and (2.4) one gets )~I(M1)A(M1)<=)~I(M2)A(M2). Now, if we 
change the roles of the metrics ds~ and ds 2, we obtain the equality. As a 
consequence, the inequalities (2.2) and (2.3) become equalities. It follows, from 
the equality in (2.2), that the linear functions of the immersion 03 are eigen- 
functions for the metric ds 2 associated to the eigenvalue 21(M1), that is 

(2.5) A 1 I//3 = - , ~ I ( M 1 )  0 3 .  

On the other hand, the equality in (2.3) implies that 03 is a minimal immersion 
into S "2, that is 
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(2.6) A3 r = - 2 r  

Now, our hypothesis about the metric ds~ say that 21(M1)=2. This fact and 
the relations A3=(2F3) -1 Aa, (2.5) and (2.6) imply that 2F3= 1. Hence ds2=ds 2 
and r  is an isometric minimal immersion by the first eigenfunctions 
with respect to the metric ds~. 

So, we have two minimal immersions, say r and r by the first eigenfunc- 
tions such that r for a certain gGD n2+1. AS A(MI)=A(M3)=A(M2), 
from (1.12) we conclude that 

IgN2l 2 
0 dM2, 

((r  g) + 1) 2 

where gN2 is the component of g in the normal space to M in S n2 correspond- 
ing to the immersion r Thus gN2= 0 and a direct computation shows that the 
Hessian with respect to ds~ of the function f:  M--,R defined by f = ( r  is 
the bilinear form - f d s  2. Now, making use of the Obata theorem, we have the 
following alternative: 

i) f = 0  and, so, g = 0  because the immersion r was supposed full. Then r 
= r  and ds21=ds 2. 

ii) f4=0 and, so, (M, ds~) the unit 2-sphere endowed with the standard 
metric and r is the identity map. Since the metric ds~ is induced from 
the diffeomorphism r162 M---~S 2, (M, ds 2) is also the standard 2-sphere. 
However, in this case, it can occur that 2F2 ~ 1. 

Thus, the proof of the theorem is completed. 

Remark 1. In Theorem 1, we only claim the unicity of the metric for each 
conformal structure, but not the unicity of the minimal immersions by the first 
eigenfunctions. In fact, there could exist several of such immersions even with 
different full codimensions. The first consequence of Theorem 1 is that it 
permit us to hope a reasonable answer to the following problem: 

"Classify all compact Riemannian surfaces admitting a minimal immersion 
into a sphere by the first eigenfunctions". 

Ogiue, [7], and Yau, [9], proposed to study the compact minimal hyper- 
surfaces embedded into a sphere by the first eigenfunctions. More concretely, 
Yau conjectured that every minimal embedding is by the first eigenfunctions. 
So, if the Yau conjecture is true, it follows from Theorem 1 that two compact 
minimal surfaces embedded into S 3 with the same conformal type are isomet- 
ric. 

As S z and RP z have a unique conformal structure, we have that the only 
metric on these surfaces admitting a minimal immersion by the first eigenfunc- 
tions is the standard one. The square and equilateral flat tori are other known 
examples of surfaces having this kind of immersions. 

Theorem 1 enables us to characterize the equalities in some inequalities 
obtained by Li and Yau in [6]. We will only state the results corresponding to 
the real projective plane. 
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Theorem 2. i) For any metric ds 2 on R P  2 

)q(RP 2) A(RP 2) <= 12n. 

Equality holds if  and only if ds 2 is the standard metrie on R P  2. 
ii) Let M be a compact surface in R" homeomorphic to R P  2 with mean 

curvature vector H, then 
[HI2dM~=6~. 

M 

Equality holds if and only if M is the image of  the Veronese suface under a 
conformal transformation o f  the Euclidean space. 

iii) Let  M be a compact surface homeomorphic to R P  2. I f  M is a minimal 
surface in some sphere S n, then 

A(M)>__6n 

and the equality holds if and only if  M is the Veronese surface. 

Remark 2. Since the minimal deformations of a minimal compact surface in S" 
have constant area, it follows from iii) that, if ~,: R p 2 ~ s "  is a deformation of 
the Veronese surface by minimal surfaces, then ~t is the Veronese embedding 
for all t. However, if we consider the two-sheeted covering of the Veronese 
surface which is a minimal immersion of the standard 2-sphere by the second 
eigenfunctions, there exists minimal deformations Ct: $ 2 ~ S  4 of this immersion 
such that the induced metric on S 2 from ~t is not the standard one for t + 0  
(see the Tjaden example in [4]). 

Another result of Li and Yau which can be improved by making use of 
Theorem 1 is the following 

Corollary 3. Let ds 2 and ds 2 two conformal metrics on a compact surface M.  Put 
ds22=2F ds 2. Suppose that the metric ds 2 admits a minimal immersion in some 
unit sphere by the f irst  eigenfunctions and let ~02: (M, ds2)--*S ~ a minimal isomet- 
ric immersion. Then 

A(M2)>=A(M O. 

I f  the equality holds (M, ds 2) and (M, ds 2) are isometric and, provided that 
(M, ds 2) is not the standard unit 2-sphere, 2 F =  1. 

Now, we will study the problem of the existence of minimal immersions by 
the first eigenfunctions in the special case where M is an orientable compact 
surface of genus one. In fact, we will solve it when M is immersed as a 
hypersurface. 

Theorem 4. Let  M be a minimal torus immersed into S 3 by the f irst  eigenfunc- 
tions. Then M is the Clifford torus. 

Proof. Suppose that r M ~ S  3 is a minimal immersion by the first eigenfunc- 
tions and let ds 2 be the induced metric on M from ~1- We denote by 
~92: M ~ S  3 the polar surface of M, that is, ~92(p) is the unit normal vector of 
the immersion ~1 at the point p ~ M .  Then ~0 z is a minimal immersion and, if 
ds 2 is the induced metric from ~02, we have ds2=(1 - K ) d s  2, K being the Gauss 
curvature for the metric ds 2 (see [5]). So, the corresponding canonical mea- 
sures are related by d M 2 = ( 1 - K ) d M  1. Integrating and making use of the 
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Gauss-Bonnet theorem, we get 

A(Mz)=A(M O. 

From Corollary 3 one has 1 - K = I .  Hence ds 2 is a flat metric and, so, ~1 
is the Clifford embedding. 

Remark 3. Lawson conjectured, [9], that the only minimally embedded torus 
into S 3 is the Clifford torus. From Theorem 4 it follows that, if the Yau 
conjecture is true, then the same holds for the Lawson one. 

In the general case, if M is a minimal fully immersed torus into S" by the 
first eigenfunctions, from a result of Besson in [2], we have that n < 5. Also, 
Yang and Yau in [8] have shown that A(M)<8n and, hence, M is embedded 
into S", [6]. 

3. Conformal area of  compact  surfaces of genus one. Applications 

Let (M, ds 2) be an orientable compact surface of genus one. There exists a 
metric conformal to ds 2 with Gauss curvature identically zero. So, (M, ds 2) is 
conformally equivalent to a flat t o r u s  (RZ/F, dsg) where F is a 2-dimensional 
lattice and ds~ is the metric on RZ/F induced from the Euclidean metric on R 2. 
Moreover, it is well-known that each flat torus is isometric, up dilatations, to a 
flat torus T(a,b)=RZ/F(a,b) where F(a,b) is the lattice generated by 

_ < !  b > 0  and a Z + b 2 > l  (see [1]). {(1, 0), (a, b)} with 0 ~ a = 2  , = 

Also, one can see in [1, p. 146] that the eigenvalues of the Laplacian of 
(T(a,b),dsg) are given by 

where (p, q)eS= {(r, s)eZ x Z/s >0 or s = 0  and r>0} .  The induced functions on 
r(a, b) from 

) 
g p q ( X , y ) = s i n 2 n l ( q , ~ ) , ( x , Y )  ) ,  

are eigenfunctions associated to 2.. .  

Proposition 5. Let O: r(a, b) ~ S" be a conformal immersion of ( r(a, b), dsg) into some 
unit sphere. I f  ~ 0 d M 0 = 0 ,  where dM o is the canonical measure associated to 

T(a, b) 

the metric ds 2, then 
47zEb 

A(~O)=�89 ~ IVt)lEdMo > 
T(a,b) = 1 + b  2 + a  2 - a  

and the equality holds if and only if ~b is given by a subspace of the sum of 
eigenspaces corresponding to 2 o 1,21o and 2 x 1. 
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Proof Let us denote by f p q ,  gpq  t h e  normalized eigenfunctions obtained from 
(3.2), and we have 

Pq 

with (p, q)eS and Apq, BpqeR "+ 1. So, taking into account (3.2), we get 

1 
2rc q; ~= Z { -qApqgpq +qBpqLq} 

Pq 

Putting apq = IApql 2 + IBpql 2, one has 

[. I~'xlgdMo=4~22q2apq, 
T(a, b) pq 

I~b ,12dMo=4r t2~-~ - )2apq ,  
T(a, b) pq 

(Ox,tpy) dMo=4rc2 ~ q P ~ a p q .  
T(a,b) pq 

Now, since 0 is a conformal immersion into S" one has 1012=1, Iq, xli=l~,yl z 
and (0x, tpy)=0.  Using the above equations and (3.1) we can write 

(3.3) ~ {b 2 q2 _ (p_  q a)2} apq = O, 
Pq 

(3.4) ~. q(p - q a) apq = 0 
Pq 

(3.5) 2 apq = ~ dM o = b, 
pq T(a, b) 

(3.6) A(qt) = ~ iV~bl2dMo= q2+ apq. 
2 ~ 2 T(a, b) 

As we assume that ~ OdMo=0,  we have aoo=0, that is, the index (p,q) 
T(a,b) 

in (3.3), (3.4), (3.5) and (3.6) runs over S-{(0,0)}.  Now, from (3.3), we obtain for 

a l o :  a l o = 2  {bZ q2-(p-qa)2}apq (p,q)~S-{(0,0),(1,O)}. 
Pq 

Using this equality, we rewrite (3.4), (3.5) and (3.6) as follows 

(3.7) ~ q(p - q a) apq = O, 
Pq 

(3.8) ~ {1 + b  2 q2_(p_qa)Z} apq=b, 
Pq 

1 
(3.9) 27z2 A(O)= 2 ~ q2 apq 

Pq 

with (p, q)~S - {(0, 0), (1,0)}. 
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We find in (3.8) the following value for %1: 

b 1 +bZq2-(p-qa)2 
%1- l + b 2 _ a  2 ~ l + b 2 _ a  2 apq 

Pq 

where (p,q)eS-{(O,O),(1,O),(O, 1)}. Substituting such value for aol in (3.7) and 
(3.9) we get 

,-, (q(p-qa)  a(l +b2 q2-(p-qa)2)]  a 
(3.10) 

2-"<pqtb + b ( l + b 2 _ ~  ( a p q - l + b Z - a 2 '  

1 2 
(3.11) 2rc2 A(0)= 1 +b z - a  2 {b+~(q2 - a 2  q2 _ 1 +(p-qa)2)apq} 

Pq 

with (p, q)eS - {(0, 0), (1, 0), (0, 1)}. 
Finally, from (3.10), we have 

1 
a11- l +b2 +a2_ a {ab-~((a2 +b2 + l)pq+a( -p2-q2))apq} 

where (p, q)~S* = S -  {(0,0), (1,0), (0, 1), (1,1)}. This together with (3.11) give us 

1 2 
- {b + ~ (p2 + q2 _ p q _  1) apq} 

2n2 A(~) l+b2+a2_a  pq 

with (p,q)eS*. The proof of Proposition is now immediate observing that 1 
+b2 +a2-a>O and (p2 +q2-pq-1)apq>O for all (p,q)eS*. 

The following immersions Oab:(T(a,b),dsg)--,S 5 provide us examples of 
conformal immersions (in fact homothetic) which satisfy 

4n2b 
(3.12) A(O"b) = 1 + b 2 + a 2 - a" 

We define ~kab by 

1 
O,b=(1 +b2 +a2_a)~ ((bZ +a2-a)~ flo,(b2 +a2-a)~glo, 

(1-a) �89189189 

with fvq, gPq a s  in (3.2). These immersions are full into either S 5 or S 3 
according to T(a,b) is oblique (a4=0) or rectangular (a=0). It is easy to see 
that they have constant mean curvature and that the only minimal are ~0Ol and 
r162 which correspond to the immersions by the first eigenfunctions of the 

2 2 

square and equilateral flat tori respectively. 
In the case a--0  of the rectangular tori, one can prove that 0oh is, up 

motions of S", the only conformal immersion q; of (T(O,b),dsg) into S" such 
that O is given by a subspace of the sum of eigenspaces associated to 2ol, 21o 
and ~11. 

On the other hand, since we have 

~b abdMo =0 
T(a, b) 
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for each (a,b) and the measures dM o and the induced from Oab are pro- 
portional, the origin g = 0  is a critical point for the function A(go Oab) (see (1.5)). 
By using the second variational formula (1.6) it is easily seen that g = 0  is a 
local maximum for A(g o ~P,b) when 

(3.13) (a--�89 + b 2 <9.  

As a consequence of Proposition 5 we have: 

Corollary 6. Let M be a compact surface conformally equivalent to the f iat  torus 
r(a, b). Then 

4nZb 
Ac(M) > 1 + b 2 + a 2 - a" 

Proof. It is sufficient to observe that, from (1.9) and Proposition 5, for any 
conformal immersion ~ of (T(a,b),ds 2) into S" there exists a conformal trans- 
formation g of S" which satisfies 

47zZb 
A(go ~)_> 1 + b  2 + a  2 - a "  

Remark 4. Since for all compact  surface M one has A,(M)>__47~, [6], the above 
Corollary has only significance whenever ~b > 1 + b 2 + a 2 - a. 

The following result extends the region in the modular space of genus one 
where Li and Yau have shown to be true the Willmore conjecture: 

Corollary 7. Let M be a surface of genus one in R". I f  M is conformally 
equivalent to a fiat torus T(a, b) with (a 1)2 + ( b - 1 )  2< 1/4, then 

IHI2 d M >  2n 2. 
M 

Proof It is sufficient to use (1.11) and Corollary 6. 

Note that, using (3.12) and Proposition 5, for each conformal immersion 
of (T(a,b),ds 2) into S", we have 

sup A(g o O)->-- A(r 
g E D n + 1 

Moreover, we know that g = 0  is a local maximum for the function A(gOO,b) 
for certain values of (a,b) given in (3.13). Now, we will prove that, under some 
conditions, this local maximum is a global maximum. In fact, we have 

Theorem 8. Let M be a compact surface conformally equivalent to a fiat 

rectangular torus Tb= T(O,b) with b <=]//5/3. Then 

4~2b 
Ac(M)= 1 +b 2" 

Proof From the above considerations, it only remains to prove that the 
function A(g o O0b) attains its maximum at the point g =0. For it, if dM b is the 
induced measure on T b from Cob, by adding S ]I4[2dMb to both sides of (1.12) 
we get Tb 
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[f/~+gNI2 
(3.14) A(t~Ob)+ ~ lI4[2dMb=A(g~ + ~ f2  dMb, 

Tb Tb 

where f =  (COb, g) + 1. 
Let us denote by d/t the following measure on T0: 

If/lq-gNI 2 
d/t= ~ [f i~ + gNlZ dMbdMb 

Tb 

which is well-defined whenever either g + 0  or b> 1. Since in the case b=  1 
Theorem 8 is true from I-6, Proposition 1], henceforth we will suppose that 
b> 1. As ~ d/ t= 1 and f > 0 ,  from the Jensen inequality for the convex function 

Tb 
qS(t)=t -2, we have 

5 f - 2 d f l > ( I  fd/ t)  -2, 

that is 
Tb Tb 

i fH+gS]2 (~ IfI4+gUlZdMb) 3 
Tb 

f2 dMb> - -  - r~ = ( ~ f l f H  + gNI2 dMb) 2 
Tb 

So, by using (3.14), the proof is achieved if we prove that 

( S I f lq  + gN[2 dM~)3 
rb > S ilql2dMb 

(3.15) ( ~ f l f / 4+gN[  2 dMb) 2 = rb 
Tb 

for all geD 4. But the immersion Oob is given by 

(3.16) Oob(X,y)--(l+b2) �89 bcos y, bsin2~jy, cos2~x, sin21tx 

for 0_<x_<l, O<y<b and so it is easy to see that a subgroup of the 
isometries group of S 3 which is isomorphic to S i x  S 1 acts transitively on 
O0~(Tb). Taking into account the invariance of A(goOob) under motions of S 3, 
we can ourselves restrict to the points geD 4 of the form g=(c~,0,fl,0), e2 
+ f 1 2 < l .  

A direct computation from (3.16) transform the inequality (3.15) that we 
want to prove in 

(3.17) Fh(a, fl)> Vb(O,O ), a 2 + f i 2 < l  

where Fb(a, fl)= (uh(e , fl))3/(vb(e , fl))2 and 

b2+l ( ~ + b f l 2 )  (b2-1) 2 
(3.18) Ub(C~' f l ) = ~  Jr 4b 

-b2)c~2+(3b2-1)bfi  2 (b2-  1) 2 
Vb(e'fl)=(3 8b 8 ~ 4b 
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We have that, at least for l < b < l / 3 ,  F b can be defined for arbitrary (c~,//). 
Moreover, in this case, there exists A, B, C, D > 0  such that 

Fb(or (AtZ+B)3 t2 = ~2 +/;~2. 
fl) > ( C t 2 _1_ D)2' 

So, lim Fb(~,/~)= oo and thus F b attains its infimum at a critical point. On the 
t 2 ~  

other hand, if (~,/3) is critical for Fb, we have ?,Fb/~,~=?Fb/#[~=O and hence 

(3.19) c~ {3 (1 + b 2 ) Vb(C~,/4) -- 2 (3 -- b 2) ub(c~,/3)} = 0 

l~ {3(1 + b 2 ) % ( ~ , [ ~ ) - 2 ( 3 b  2 - 1) Ub(C~,/~)} =0. 

If ~4:0 and fl=t=0, then we have Ub(e, fl)=Vb(~,fi)=O. But this is impossible from 

(3.18). Now, if c~=0 or /3=0, (3.19) implies e = / ~ = 0  provided that b__<]/~.  
Then (0,0) is the only critical point for F b and, so, F b attains its infimum at this 
point. Thus the proof is finished. 

Remark  5. It is stated in one of the steps in the proof of Theorem 2 of [6] 
that, for the area function A : D " + l o R  associated to an equivariant embedding 
0: M m ~ S "  from a compact homogeneous manifold into a sphere, there is no 
saddle points, and, so, A has at most one local maximum (note that although 
in Theorem 2 of [6] 0 is assumed to be minimal, this hypothesis is not used in 
this concret step). If  this assertion would be true, the proof of our Theorem 8 
could be simplified as follows: "We know, from (3.13), that g = 0  is a local 

maximum for A(g o 00b) when b <1/2. Since 0Oh is an equivariant homogeneous 
embedding, then g = 0  is the unique local maximum. As A(tPob)>4~z=maxi- 
mum value of A(goO0o) at the infinity, then the area function attains its 
maximum at g=0 . "  However, the proof of this assertion in [6] is not correct: 
The reasoning fails when it is assured that one can find a non-negative 
direction for the second variational formula at a saddle point, which is normal 
to the level set of the area function containing the saddle point. In fact, the 

origin g = 0  is a saddle point for the area function A(g o 00b), if b >1/2. 

Remark  6. Theorem 8 shows that the estimate (1.11) is not sufficient to solve 
the Willmore conjecture. In fact, we have 4 g  2 b/1 + b 2 ~ 2 g  2 only for b =  1. 

It seems natural to think, after Theorem 8, that the function A(g~ 
attains its maximum at the origin provided that g = 0  is a local maximum. This 
leads us to propose the following conjecture: 

Conjecture. Let M a compact surface conformally equivalent to a flat torus 
T(a ,b)  with (a-- �89 2 + b  2 <9/4. Then 

4rr2b 
Ar = 1 + b  2 + a  2 - a '  

Finally, we state the following consequence of Theorem 8 which extends 
Theorem 4 to an arbitrary codinaension making a suitable restriction on the 
conformal type. 



166 S. Montiel and A. Ros 

Coro l la ry  9. Let M be a compact surface con)brmally equivalent to a f iat  

rectangular torus T b with 1 <b  <]//5]3. There exists no minimal immersions by the 
first eigenfunctions from M into any unit sphere. 

Proof  Suppose  that  there  exists a me t r i c  ds 2 o n  T b c o n f o r m a l  to the flat me t r i c  
ds 2 a n d  a full c o n f o r m a l  i m m e r s i o n  ~b: (Tb,dS2)~S"  which  is i sometr ic ,  m i n i m a l  
and  by  the first e i gen func t i ons  with respect  to ds 2. F r o m  (1.9) a n d  Propos i -  
t ion  5, there  exists g~D "+ 1 such  that  

(3.20) A(g o r  > A(Oob ). 

O n  the  o the r  h a n d  

(3.21) A(~9) > A(g o ~9) 

because  r is m i n i m a l .  M o r e o v e r ,  s ince ~ is m i n i m a l  by  the first e igenfunc t ions ,  
we have  A(~b)=Ac(Tb), tha t  is, A(O)=A(O0b ) as fol lows by us ing  T h e o r e m  8. So, 
the inequa l i t i e s  (3.20) a n d  (3.21) b e c o m e  equal i t ies .  The  first one  a n d  Propos i -  
t i o n 5  say us tha t  O o b = g o O  (recall  the un ic i t y  of OOb) a n d  the second  one  
impl ies  g = 0. So, ~ = COb up  to a m o t i o n  of  S". But  OOb is m i n i m a l  o n l y  when  b 
= 1. This  is a c o n t r a d i c t i o n  and ,  so, the p ro o f  is f inished.  
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Oblatum 13-111-1985 

Note added in proof 

The following recent information may be useful. N. Ejiri has shown that the only superminimal 
compact surface immersed into S 4 by the first eigenfunctions is the standard sphere ("Calabi lifting 
and surface geometry in S 4'', preprint). He has obtained a strong result about the area of minimal 
RP 2 into spheres as well ("Equivariant minimal immersions of S 2 into s2m(1) ", preprint). R.L. 
Bryant told us (private communication) he has proved most of our results in 3, including a 
solution for our conjecture. A. E1 Soufi and I. Said informed us (private communication) they have 
got suitable generalizations for higher dimension of the results about conformal area. 


