
Interior gradient estimates and existence
theorems for constant mean curvature graphs

in Mn ×R

Joel Spruck ∗

Dedicated to Leon Simon on the occasion of his 60th birthday

1 Introduction

In this paper we establish a priori interior gradient estimates and existence

theorems for n dimensional graphs S = {(x, u(x)) : x ∈ Ω} of constant mean

curvature H > 0 in an n + 1 dimensional Riemannian manifolds of the form

Mn × R where Mn is simply connected and complete and Ω is a bounded

domain in M. Our aim is to illustrate the use of intrinsic methods that hold

in great generality to obtain apriori estimates. In particular, we shall solve

the Dirichlet problem for constant mean curvature graphs analogous to the

results of Serrin [14, 15].

If ds2 = σijdxidxj is a local Riemannian metric on M, then M×R is given

the product metric ds2 + dt2 where t is a coordinate for R. As we shall see

in the next section, the height function u(x) ∈ C2(Ω) satisfies the divergence

form equation

div
Du

W
= nH(x) , W = (1 + |Du|2)1/2(1.1)
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where the divergence and gradient Du are taken with respect to the metric

on M. Equivalently, equation (1.1) can be written in non-divergence form

1

W
gijDiDju = nH(x) ,(1.2)

where D denotes covariant differentiation on M and

gij = σij − uiuj

W 2
, ui = σijDju .

We can now state the main results of this paper. Let P be a point in Ω

and suppose that the geodesic ball Bρ(P ) ⊂ Ω for ρ < R(P ), the injectivity

radius of M at P.

Theorem 1.1. Let u ∈ C3(Ω) be a non-negative solution of (1.1). Then

|W (P )| ≤ 32 max (1, (
u(P )

ρ
)2))e16Cu(P )e16C(

u(P )
ρ

)2(1.3)

for a constant C independent of u, but depending on the C1 norm of H(x),

a lower bound for the sectional curvatures of M and an upper bound for ∆d2

on Ω .

An interior gradient estimate for any bounded solution of (1.1) follows in-

mediately from Theorem 1.1.

As an application of Theorem 1.1 we have the following non-constructive

apriori lower height estimate for constant mean curvature graphs.

Theorem 1.2. Let Ω be a bounded domain with C2 boundary whose inward

mean curvature satisfies the condition H ≥ n
n−1

H+ε for some ε > 0. Let u be

a solution of (1.1) for H(x) ≡ H > 0 constant in Ω and suppose u ≥ 0 on ∂Ω.

Then there exists C > 0 independent of u such that u > −C in Ω.
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It is also of interest to consider graphs moving by mean curvature. Let

ΩT = Ω× (0, 2T ) ; then u(x, t) satisfies

ut = gijDiDju(1.4)

Theorem 1.3. Let u(x, t) ∈ C3(ΩT )∪C0(ΩT ) be a non-negative solution of

(1.4). Then,

W (P, T ) ≤ 32 max (1,
u(P )2

ρ
)e

16C(u(P )+
u(P )2

ρ2 +
u(P )2

T
)

(1.5)

with C independent of u, but depending on a lower bound for the Ricci cur-

vature of M and an upper bound for ∆d2 on Ω .

We next turn to existence theorems. For simplicity we consider only con-

stant mean curvature graphs but analogues of Serrin’s results for prescribed

mean curvature also hold.

Theorem 1.4. Let Ω be a bounded domain with C2 boundary whose inward

mean curvature satisfies the condition H ≥ n
n−1

H > 0. Suppose in addition

that the Ricci curvature of M satisfies Ric(M) ≥ − n2

n−1
H2on Ω. Then the

Dirichlet problem

div
Du

W
= nH in Ω(1.6)

u = φ on ∂Ω(1.7)

(1.8)

is uniquely solvable for arbitrary continuous boundary data φ.

The condition on Ric(M) insures that the mean curvature of the in-

ward parallel surfaces is increasing as a function of distance. This implies

−∆d ≥ nH which is used in a barrier argument. There is further discussion
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of other possible assumptions (that give sharp results) in Section 5. Using

Theorem 1.3 we may dispense altogether with the condition on Ricci curva-

ture.

Theorem 1.5. Let Ω be a bounded domain with C2 boundary whose inward

mean curvature satisfies the condition H ≥ n
n−1

H + ε for some ε > 0. Then

the Dirichlet problem

div
Du

W
= nH in Ω(1.9)

u = φ on ∂Ω(1.10)

(1.11)

is uniquely solvable for arbitrary continuous boundary data φ.

As is well-known from the work of Finn and Serrin, our existence theorems

cannot in general be improved except for constant boundary data in certain

cases. An example of such result (which is well known for M = Rn or

M = Sn) is the following.

Theorem 1.6. Let Ω be a bounded domain with C2 boundary whose inward

mean curvature satisfies the condition H ≥ (1 + ε)H for some ε > 0 and

assume that that the Ricci curvature of M is non-negative on Ω. Then the

Dirichlet problem

div
Du

W
= nH in Ω(1.12)

u = 0 on ∂Ω(1.13)

(1.14)

is uniquely solvable.
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For mean curvature flow, we have the corresponding existence result as

in the Euclidean case (see Huisken [7] and Oliker-Uraltseva [11, 12]).

Theorem 1.7. Let Ω be a bounded domain with C2 boundary whose inward

mean curvature satisfies H > 0. Then the Dirichlet problem

ut = gijDiDju in Ω× (0,∞)(1.15)

u(x, t) = φ(x) on ∂Ω× (0,∞)(1.16)

u(x, 0) = u0(x)(1.17)

is solvable for arbitrary continuous boundary data φ and C2(Ω)∪C0(Ω) com-

patible initial data u0. Moreover as T →∞ , u(x, t) converges to the solution

of the minimal surface equation with boundary data φ(x) given by Theorem

1.4.

Example 1.8. It is probably useful at this point to give an example which

shows that there cannot be an interior gradient estimate of the form W (P ) ≤
f(u(P )

ρ
) Let M be H2, two dimensional hyperbolic space and take H(x) ≡ 1

2
.

At a fixed point, we choose geodesic polar coordinates ds2 = dr2+sinh2 r dθ2 .

We look for a solution of (1.1) of the form u = u(r) giving the ode

1

sinh r
(sinh r

u′√
1 + u′2

)′ = 1 .

Integrating once gives

u′√
1 + u′2

=
cosh r − 1

sinh r
,

which yields u′ =
√

cosh r−1
2

and so u =
√

2(cosh r + 1). Thus we have positive

entire graphs of constant mean curvature, unlike the situation for Euclidean

space.
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For non-compact Mn, the existence of entire constant mean curvature

graphs is closely related to Cheeger’s isoperimetric constant

h(M) = inf
Ω

|∂Ω|
|Ω|

,

where Ω ranges over all compact domains in M with rectifiable boundaries.

Using the divergence form of (1.1), we see that if there is an entire H graph ,

then necessarily H ≤ |∂Ω|
|Ω| for all bounded Ω and so H ≤ h(M). For example

in Hn, this gives the condition H ≤ n−1
n

which is sharp. Note also that in

this case, the condition Ric(M) ≥ − n2

n−1
H2 is exactly H ≥ n−1

n
. When the

opposite inequality is satisfied, there is a non-negative entire solution, which

implies apriori height estimates for the Dirichlet problem.

In future work, we will study other curvature functions such as the “higher

order mean curvatures” Hr(κ) = σr(κ)

σr(~1)
. We just want to point out that the

Dirichlet problem for extrinsic Gauss curvature K0 > 0 is precisely

det DiDju

σ
= K0W

n+2 in Ω(1.18)

u = φ on ∂Ω .

.

From the work of Bo Guan [4], we have

Theorem 1.9. Suppose there exists a locally strictly convex subsolution u ,

that is,

det DiDju

σ
≥ K0W

n+2 in Ω

u = φ on ∂Ω .

Then there exists a stricly convex solution u ∈ C∞(Ω) of the Dirichlet prob-

lem (1.19).
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2 Local calculations for the graph S

Let x1, . . . xn be a system of local coordinates for M with corresponding metric

σij. Then the coordinate vector fields for S and the upward unit normal to

S is given by

Xi =
∂

∂xi

+ ui
∂

∂t
(2.19)

and

N =
1

W
(−uj ∂

∂xj

+
∂

∂t
) , ui = σijuj .(2.20)

The induced metric on S is then

gij =< Xi, Xj >= σij + uiuj(2.21)

with inverse

gij = σij − uiuj

W 2
.(2.22)

We claim that

g = det(gij) = σW 2 , σ = det(σij) .(2.23)

To see this, assume |Du| 6= 0 and note that

[(σij)(gij)]kl = σki(σil + uiul) = δkl + ukul .

Hence σ−1g = det(δkl + ukul) = W 2 since (δkl + ukul) has eigenvalues 1

with multiplicity n− 1 (eigenvectors orthogonal to the Euclidean gradient of

u) and eigenvalue W 2 with eigenvector parallel to the Euclidean gradient of u.

The second fundamental form bij of S is given by (D is covariant differ-

entiation on M ×R)

bij =< DXi
Xj, N >=< D ∂

∂xi

∂

∂xj

+ uij
∂

∂t
, N >

=< Γk
ij

∂

∂xk

+ uij
∂

∂t
, N >=

1

W
(−Γk

iju
lσkl + uij) .
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Hence,

bij =
DiDju

W
(2.24)

and so the equation of prescribed mean curvature H(x) is then

nH(x) =
1

W
gijDiDju .(2.25)

Now consider the functional I(S) representing the area of S plus the

weighted volume under the graph. In local coordinates,

I(S) =
∫

(W + nH(x)u(x))
√

σ dx .

As a functional of u, this gives the equation of prescribed mean curvature

H(x) as Euler-Lagrange equation

div
Du

W
=

1√
σ

Di(
ui

W
) = nH(x) .(2.26)

It is easily seen that (2.25) is the non-divergence form of (2.26).

We will also need the well known formulae

∆S u =
nH(x)

W
(2.27)

∆S
1

W
= −(|A|2 + Ric(N) + N(H(x)))

1

W
,(2.28)

where |A| is the norm of the second fundamental form, Ric is the Ricci

curvature of M×R, N(H) is the directional derivative of H(x) in the normal

direction N and ∆S is the Laplace-Beltrami operator of S given in local

coordinates by

∆S ≡ divS(DS ·) =
1
√

g
Di(

√
ggijDj ·) .(2.29)

For a clean derivation of (2.28) using moving frames see [13, section 2]

where M is three dimensional but the derivation is valid in all dimensions.
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Equation (2.28) is easily seen to be equivalent to (2.26).

For a discussion of ∆S in terms of divS see [6], where the important

formula

∆Sφ(x) = gijDiDj φ− nH(x)
uk

W
φk .(2.30)

is derived. From (2.30) follows the useful formula

∆S g(φ) = g′(φ)∆S φ + g′′(φ)gijDiφDjφ .(2.31)

3 The proof of Theorems 1.1 and 1.3

We will derive a maximum principle for the function h = η(x)W by comput-

ing ∆S h. From (2.28) and (2.31) we find

∆SW − 2

W
gijDiWDjW ≥ −CW .(3.32)

Then a simple computation gives

Lh ≡ ∆Sh− 2gij DiW

W
Djh(3.33)

= η(∆SW − 2

W
gijDiWDjW ) + W∆Sη ≥ W (∆Sη − Cη) .(3.34)

We define

η(x) ≡ g(φ(x)); g(φ) = eKφ − 1,(3.35)

with the constant K > 0 to be determined and

φ(x) =

(
−u(x)

2u0

+ (1− (
d(x)

ρ
)2)

)+

.

Here d(x) is the distance function from P, the center of the geodesic ball

Bρ(P ) ⊂ Ω and we will bound W (P ). Since u is non-negative, η(x) vanishes

outside of ∂Bρ(P ). To be more precise, we should replace 1 by 1-ε in the

definition of φ so that η is smooth with compact support and later let ε tend
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to zero. For simplicity of writing, we will omit this.

The point is now to choose K so that ∆Sη − Cη > 0 on the set where

h > 0 and W is large. A straightforward compution gives that on the set

where h > 0,

∆Sη − Cη ≥ WeKφ{K2(
|Du|2

4u(P )2W 2
− 2

|Du|
ρ2W 2

)− CK(
1

u(P )
+

1

ρ2
)− C}

Hence on the set where h > 0 and W > 16 max (1, (u(P )
ρ

)2), we find

∆Sη − Cη ≥ WeKφ{ K2

8u(P )2
− CK(

1

u(P )
+

1

ρ2
)− C}(3.36)

We now choose K = Mu(P )(1 + u(P )
ρ2 ) where M is large but independent

of u(P ) and ρ. Then

∆Sη − Cη ≥ WeKφ{(M
2

8
− CM)(1 +

u(P )

ρ2
)− C} > 0 ,(3.37)

for M = 16C. Hence by (3.34) and the maximum principle, W ≤ 16 max (1, (u(P )
ρ

)2)

at the point where h achieves its maximum. Therefore

h(P ) = (e
K
2 − 1)W (P ) ≤ (eK − 1) · 16 max (1, (

u(P )

ρ
)2)

or

W (P ) ≤ 32 max(1, (
u(P )

ρ
)2)e16Cu(P )e16C(

u(P )
ρ

)2 ,(3.38)

which proves Theorem 1.1.

The proof of Theorem 1.3 is very similar and follows the argument of

Evans-Spruck [1].

For later use in the proof of Theorem 1.4, it is convenient to have a global

maximum principle for W assuming that u is globally bounded.
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Theorem 3.1. Let u ∈ C3(Ω) be a solution of (1.1) where H(x) ≥ H > 0

and assume |u| ≤ M . Then

sup
Ω

W ≤ e2CM sup
∂Ω

W + 2 .(3.39)

Proof. From (3.34) with η = eKu we find

Lh = Kh(
nH(x)

W
− K

W 2
+ (K − C

K
)) ≥ Kh(

nH

W
− K

W 2
+ (K − C

K
)) .

We choose K = C and note that at an interior maximum of h,

(C − 1)W 2 + nHW ≤ C ,

which implies W ≤ 2. On the other hand if h assumes its maximum on ∂Ω,

sup
Ω

W ≤ e2CM sup
∂Ω

W .

Combining the two cases proves Theorem 3.1.

4 The proof of Theorems 1.4 and 1.5

The main step is to obtain a global apriori estimate for supΩ |u| and sup∂Ω |∇u|
for a family of solutions ut of the constant mean curvature equation with

mean curvature tH and boundary values tφ 0 ≤ t ≤ 1, independent of t.

For Theorem 1.5, in step 1, we use Theorem 1.2 which we prove in the next

section.

Since the argument is the same for all t, we will do this for t=1. Then

by Theorem 3.1 (global gradient bound), we have a uniform bound for the

|ut|C1(Ω) and the remainder of the argument is standard.

Step 1. Estimation of supΩ |u|
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Proposition 4.1.(yy li and nirenberg) Assume ∂Ω ∈ C2 and let Ω0 be the

largest open subset of points x ∈ Ω which have a unique closest point y ∈ ∂Ω.

The the distance function d(x) to ∂Ω is C2(Ω0).

Lemma 4.2. Assume Ric ≥ − n2

n−1
H2 and H∂Ω ≥ n

n−1
H. For x0 ∈ Ω0, let

H(x0) be the (inward) mean curvature of the level set of d(x) passing though

x0. Then H(x0) ≥ n
n−1

H.

Proof. Let H(t) be the mean curvature of the level set at a point where

d(x) = t along the geodesic σ(t) joining y0 ∈ ∂Ω to x0 . By standard

comparison theory

H ′(t) ≥ H2(t) +
1

n− 1
Ric(σ′(t), σ′(t)) ≥ H2(t)− (

n

n− 1
H)2 .

Since H(0) = H∂Ω ≥ n
n−1

H, it follows that H ′(t) ≥ 0 and the lemma follows.

We now construct an upper barrier for -u (i.e a lower barrier for u) of the

form

w = sup−φ + h(d(x))

where d(x) is the distance function to ∂Ω. Then if x ∈ Ω0,

Mw =
1

W
(σij − wiwj

W 2
)(h′DiDjd + h′′DidDjd)

=
1√

1 + h′2
(h′∆d +

h′′

(1 + h′2)
)

=
h′′

(1 + h′2)
3
2

− h′√
1 + h′2

(n− 1)H(x)

≤ h′′

(1 + h′2)
3
2

− nH
h′√

1 + h′2
.

Choose h = eAC

C
(1 − e−Cd) where A > 2 maxΩ d is fixed and C is large.

Then h′ = eC(A−d) and h′′ = −Ch and so

Mw ≤ − Ch′

(1 + h′2)
3
2

− nH
h′√

1 + h′2
≤ −nH
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for C > nH.

Let v = −u. We Claim: v ≤ w (we show that w is a viscosity supersolu-

tion)

Suppose M = sup v − w > 0 is achieved at x0 and let y0 ∈ ∂Ω be

the closest point to x0. Then since v(x) − v(x0) ≤ w(x) − w(x0), a simple

argument show that |∇v(x0|) = h′(d(x0) > 0 so the local level set

Γ = {x ∈ Ω : v(x) = w(x0) + M}

is C2 near x0 and w(x) ≥ w(x0) on Γ. Since h is increasing this means that

d(x) ≥ d(x0) on Γ.

Hence we can find a small ball Bε(z0) tangent to Γ at x0 such that

w(x) + M ≥ v(x) ≥ w(x0) + M on Bε(z0) .

So w(x) ≥ w(x0) , i.e. d(x) ≥ d(x0) on Bε(z0)

Therefore the ball of radius d(x0)+ ε centered at z0 is contained in Ω and

thus z0 is on the extension of the geodesic from y0 to x0 (otherwise there

exists z ∈ Bε(z0) with d(z) < d(x0), a contadiction).

Hence x0 ∈ Ω0 and our earlier computation shows this violates the max-

imum principle. This completes Step 1.

Step 2. Estimation of sup∂Ω |∇u|

This argument is now standard and uses a barrier w = φ(x)+h(d) where

h(0) = 0 in a neighborhood {0 < d(x) < d0} of ∂Ω. For details see [3].
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Step 3. Existence for continuous φ(x).

When φ(x) is only continuous we approximate φ uniformly by smooth

boundary data and use the interior gradient estimate to obtain strong con-

vergence on compact subsets of Ω.

A local barrier argument show that the limiting solution achieves the

boundary values φ

5 Other ways to obtain sharp sup norm esti-

mates

5.1 Moser iteration when the sharp isoperimetric (Sobolev)
inequality holds n = 2, 3, 4 and Kπ ≤ 0.

When the sharp Euclidean Sobolev inequality holds, then the assumption∫
Ω |H(x)|n dV < ωn implies a sup norm estimate (see [3] p. 276).

For n = 2 and Kπ ≤ −1 say, the sharp isoperimetric inequality

L2 ≥ 4πA + A2

leads to the sharp Sobolev inequality

(
∫
Ω
|∇v| dV )2 ≥ 4π

∫
Ω

v2 dV + (
∫
Ω
|v| dV )2(5.40)

≥ (
4π

Ω
+ 1)(

∫
Ω
|v| dV )2(5.41)

∀v ∈ H1
0 (Ω). Using this improved Sobolev inequality as in [3, Theorem 10.10]

gives

Proposition 5.1. Let M2 be complete, simply connected with sectional cur-
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vatures Kπ ≤ −1 Let u satisfy div Du
W

= nH in Ω ⊂ M . Then if 4H2 < 1+ 4π
Ω

,

sup
Ω
|u| ≤ sup∂Ω|u|+ C

for a uniform constant C. In particular, the last condition is always satisfied

for 0 ≤ H ≤ 1
2

Example 5.2. In H2 let Ω = BR. Then |Ω| = 2π(cosh R− 1) and for

cosh R =
4H2 + 1

4H2 − 1
, H >

1

2

we have the equality

4H2 − 1 =
4π

Ω
,

and we have a radial “hemisphere ” solution characterized by the ode

u′(r)√
1 + u′2

= 2H
cosh r − 1

sinh r
.

Theorem 5.3.(after Bernstein-Finn) If u is any solution in BR then u is

the hemisphere solution (modulo a vertical translation).

The proof is the same as in Finn’s paper [2] using the hemisphere solution

as a barrier..

5.2 Entire solutions in Hn.

For Hn , Ric = −(n− 1)σ and so the Ricci curvature condition in Theorem

3.1, is precisely satisfied when H ≥ n−1
n

. For 0 ≤ H ≤ n−1
n

, analogous to

the n = 2 case, there is a complete entire positive radial solution. Such a

solution always give sup norm estimates by the maximum principle.

Theorem 5.4. Let Ω ⊂ Hn satisfy H∂Ω ≥ n
n−1

H (with strict inequality for

0 < H < n−1
n

) for a non-negative constant H. Then the Dirichlet problem

for constant mean curvature graphs has a solution for arbitrary continuous

boundary values φ(x).
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6 The proof of Theorem 1.6.

We sketch the proof of Theorem 1.6 since it is basically well known. From

(2.28) we obtain (using that |A|2 ≥ nH2) that 1
W

and Hu+ 1
W

are superhar-

monic on S, the graph of u. In particular 0 ≥ u ≥ − 1
H

and both functions

achieve their minimum on ∂Ω at the same point P where |∇u| achieves its

maximum.

Introduce a local orthonormal frame e1, . . . , en at P with en the interior

unit normal direction and eα , α < n the principal curvature directions to

∂Ω at P. Then ∇n(Hu + 1
W

) = Hun − un

W 3∇nnu ≤ 0 at P, i.e. ,

∇nnu ≥ HW 3 at P,(6.42)

and also ∑
α<n

∇ααu = (n− 1)|un|H ≥ (1 + ε)(n− 1)H|un| .(6.43)

On the other hand, using the nondivergence form (1.2) of the equation gives

at P,

nHW =
∑
α<n

∇ααu +
∇nnu

W 2
(6.44)

Combining (6.42),(6.43)(6.44) yields

|un|
W

≤ 1

1 + ε
,(6.45)

that is |∇u|(P ) ≤ 1√
ε2+2ε

.

Now that we have C1 estimates, the theorem follows as before.

7 The proof of Theorem 1.2.

We sketch the proof of Theorem 1.2 . The first step is to show that solutions

are always uniformly bounded below in a fixed neighborhood of the boundary.
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Lemma 7.1. Let u be as in Theorem 1.2. Then u > − log 2 in a fixed

neighborhood Ωσ = {x ∈ Ω : 0 < d(x) < 1
σ
} for fixed σ >> 1

ε
.

Proof. Consider the barrier w = log (1− σ
2
d(x)). Then as in Step 1,

Mw ≥ nH in Ω 1
2
σ. Moreover, w = 0 on ∂Ω and w = −∞ on d(x) = 2

σ
.

Thus u ≥ w on ∂Ω 1
2
σ and so u ≥ w in Ω 1

2
σ by the maximum principle for

the difference of solutions. In particular, u > − log 2 in Ωσ.

Suppose now that Theorem 1.2 is false. Then there is a sequence of

solutions un in Ω with un ≥ 0 on ∂Ω and inf un = un(Pn) = −n. Note that

by Lemma 7.1, d(Pn) > 1
σ

and so we may assume by choosing a subsequence

that Pn → P ∈ Ω. Now let vn = un + n ≥ 0 and note that vn ≥ n − log 2

in Ωσ and vn(Pn) = 0. We now use Theorem 1.1 as in Serrin [15] to prove a

local Harnack inequality for vn. That is , the sequence vn remains bounded in

a small fixed neighborhood of P and thus (by Schauder estimates) converges

uniformly to a solution v in a maximal open neighborhood D of P and diverges

to +∞ on Ω \D. But this situation is impossible for we can translate v up

until it is above v1 in D and then lower it until there is a first contact. This

first contact must be over an interior point of D, violating the maximum

principle.
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