Questions for Midterm III review from Final Fall 06
3. (a) Let $A=\left[\begin{array}{rr}4 & -3 \\ -3 & -4\end{array}\right]$. Determine a diagonal matrix D, and an orthogonal matrix S for which $A=S D S^{-1}$. Multiply out $S D S^{-1}$ to check that your answer is correct.
(b) Let $B=\left[\begin{array}{cc}4 & 3 \\ -3 & -4\end{array}\right]$. Determine whether B is similar to the matrix A from part (a) in $\mathbb{R}^{2 \times 2}$.
5. (a) Let V be a linear space. Suppose that λ is an eigenvalue of the linear transformation $T: V \rightarrow V$. Derive the fact that λ^{2} is an eigenvalue of T^{2}.
(b) Determine all matrices in $\mathbb{R}^{3 \times 3}$ that are both symmetric and orthogonal, and describe them geometrically. [Suggestion: Express the two conditions in terms of 'transpose'.]
7. For which $a \in \mathbb{R}, b \in \mathbb{R}$ does the matrix $A=\left[\begin{array}{lll}2 & 0 & 0 \\ b & 1 & 0 \\ 0 & a & 1\end{array}\right]$ have an eigenbasis $\left(\right.$ for $\left.\mathbb{R}^{3}\right)$? When it does, specify an eigenbasis (depending on a and b).
8. Let V be $\operatorname{Span}\{1, \sin x, \cos x\}$. The dimension of V is 3 .
(c) Let D denote the linear operator on V given by $D(f)=f^{\prime}$. Determine the complex eigenvalues of D-that includes the real ones!-and the corresponding eigenspaces.
9. Let $A=\left[\begin{array}{ll}1 & b \\ c & 1\end{array}\right]$, where b and c are real scalars. Determine the set of values of b and c for which the dynamical system $\mathbf{x}(t+1)=A \mathbf{x}(t)$ is asymptotically stable (meaning: for all initial states, the state vector tends to $\mathbf{0}$, as $t \rightarrow \infty$.)
10. Determine whether $q\left(x_{1}, x_{2}\right)=x_{1}^{2}+3 x_{1} x_{2}+2 x_{2}^{2}=1$ is the equation of an ellipse.
11. (a) Give an example of a 2×2 real matrices that have the same characteristic polynomial yet they are not similar. Explain.
(b) True or False: If a matrix fails to diagonalize over \mathbb{R}, it will diagonalize over \mathbb{C}. Explain.

