Solutions to Questions for Midterm III review from Final Fall 06
3. (a) Let $A=\left[\begin{array}{rr}4 & -3 \\ -3 & -4\end{array}\right]$. Determine a diagonal matrix D, and an orthogonal matrix S for which $A=S D S^{-1}$. Multiply out $S D S^{-1}$ to check that your answer is correct.
(b) Let $B=\left[\begin{array}{cc}4 & 3 \\ -3 & -4\end{array}\right]$. Determine whether B is similar to the matrix A from part (a) in $\mathbb{R}^{2 \times 2}$.

Sol. (a) The characteristic polynomial is $(4-\lambda)(-4-\lambda)-9=\lambda^{2}-25=(\lambda-5)(\lambda+5)$. We have $\operatorname{Ker}(A+5 I)=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 3\end{array}\right]\right\}$ and $\operatorname{Ker}(A-5 I)=\operatorname{Span}\left\{\left[\begin{array}{c}-3 \\ 1\end{array}\right]\right\}$.
Let $S=\frac{1}{\sqrt{10}}\left[\begin{array}{cc}1 & -3 \\ 3 & 1\end{array}\right], D=\left[\begin{array}{cc}-5 & 0 \\ 0 & 5\end{array}\right]$.
(b) The characteristic polynomial is $(4-\lambda)(-4-\lambda)+9=\lambda^{2}-7=(\lambda-\sqrt{7})(\lambda+\sqrt{7})$. Since similar matrices have the same eigenvalues B can not be similar to A.
5. (a) Let V be a linear space. Suppose that λ is an eigenvalue of the linear transformation $T: V \rightarrow V$. Derive the fact that λ^{2} is an eigenvalue of T^{2}.
(b) Determine all matrices in $\mathbb{R}^{3 \times 3}$ that are both symmetric and orthogonal, and describe them geometrically. [Suggestion: Express the two conditions in terms of 'transpose'.]
Sol. (a) Since λ is an eigenvalue there is a $\mathbf{v} \neq \mathbf{0}$ such that $T \mathbf{v}=\lambda \mathbf{v}$. Hence $T^{2} \mathbf{v}=$ $T(T(\mathbf{v}))=T(\lambda \mathbf{v})=\lambda T(\mathbf{v})=\lambda^{2} \mathbf{v}$ which proves that λ^{2} is an eigenvalue for T^{2}.
(b) $A^{T} A=I$ and $A^{T}=A$ so $A^{2}=I$. Moreover A is diagonalizable so $A=Q D Q^{T}$, where D is diagonal and $Q^{T} Q=Q Q^{T}=I$. Hence $A^{2}=Q D Q^{T} D Q^{T}=Q D^{2} Q^{T}=I$ so $D^{2}=Q^{T} I Q=I$. It follows that the eigenvalues of A are all -1 or 1 . On the other if D is diagonal with ± 1 in the diagonals then $A=Q D Q^{T}$ then $A^{2}=Q^{T} D^{2} Q=Q^{T} I Q=I$.
7. For which $a \in \mathbb{R}, b \in \mathbb{R}$ does the matrix $A=\left[\begin{array}{lll}2 & 0 & 0 \\ b & 1 & 0 \\ 0 & a & 1\end{array}\right]$ have an eigenbasis (for \mathbb{R}^{3})?

When it does, specify an eigenbasis (depending on a and b).
Sol. Since the matrix is triangular the eigenvalues are the diagonal elements 1 and 2 . $(A-I) \mathbf{x}=\mathbf{0}$ is equivalent to $x_{1}=0$ and $a x_{2}=0$.
Hence if $a \neq 0 \operatorname{Ker}(A-I)=\operatorname{Span}\left\{\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$, and if $a=0 \operatorname{Ker}(A-I)=\operatorname{Span}\left\{\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$.
$(A-2 I) \mathbf{x}=\mathbf{0}$ is equivalent to $b x_{1}-x_{2}=0$ and $a x_{2}-x_{3}=0$.
$\operatorname{Ker}(A-2 I)=\operatorname{Span}\left\{\left[\begin{array}{c}1 \\ b \\ a b\end{array}\right]\right\}$.
Hence A has an eigenbasis only if $a=0$.
8. Let V be $\operatorname{Span}\{1, \sin x, \cos x\}$. The dimension of V is 3 .
(c) Let D denote the linear operator on V given by $D(f)=f^{\prime}$. Determine the complex eigenvalues of D-that includes the real ones!-and the corresponding eigenspaces.
Sol. The matrix is $A=\left[\begin{array}{rrr}0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0\end{array}\right]$. The characteristic polynomial is $\lambda\left(\lambda^{2}+1\right)=\lambda(\lambda+i)(\lambda-i)$.
$\operatorname{Ker}(A-i I)=\operatorname{Span}\left\{\left[\begin{array}{l}0 \\ i \\ 1\end{array}\right]\right\}, \operatorname{Ker}(A+i I)=\operatorname{Span}\left\{\left[\begin{array}{c}0 \\ -i \\ 1\end{array}\right]\right\}$ and $\operatorname{Ker}(A-0 I)=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}$, so the eigenvectors are $i \sin x+\cos x$ and $-i \sin x+\cos x$ and 1 .
9. Let $A=\left[\begin{array}{ll}1 & b \\ c & 1\end{array}\right]$, where b and c are real scalars. Determine the set of values of b and c for which the dynamical system $\mathbf{x}(t+1)=A \mathbf{x}(t)$ is asymptotically stable (meaning: for all initial states, the state vector tends to $\mathbf{0}$, as $t \rightarrow \infty$.)
Sol. The characteristic polynomial is $(1-\lambda)^{2}-b c=(\lambda-1-\sqrt{b c})(\lambda-1+\sqrt{b c})$.
If $b c>0$ the eigenvalues are $\lambda=1 \pm \sqrt{b c}$, if $b c<0$ then $\lambda=1 \pm i \sqrt{|b c|}$ and if $b c=0 \lambda=1$. If $b c \neq 0$ the eigenvalues are distinct and therefore we have a basis of eigenvectors \mathbf{b}_{1} and \mathbf{b}_{2}. If $b c \neq 0$ we can therefore write $\mathbf{x}(0)=c_{1} \mathbf{b}_{1}+c_{2} \mathbf{b}_{2}$. It follows that $\mathbf{x}(k)=A^{k} \mathbf{x}(0)=$ $c_{1} A^{k} \mathbf{b}_{1}+c_{2} A^{k} \mathbf{b}_{2}=c_{1} \lambda_{1}^{k} \mathbf{b}_{1}+c_{2} \lambda_{2}^{k} \mathbf{b}_{2}$. Hence $\mathbf{x}(k) \rightarrow 0$ as $k \rightarrow \infty$ only if $\left|\lambda_{1}\right|<1$ and $\left|\lambda_{2}\right|<1$. If $b c \neq 0$ at least one eigenvalue satisfy $|\lambda| \geq 1$ so it is not asymptotically stable.
If $b=c=0$ the matrix is the identity so the eigenvalues are both 0 and it is not stable.
If $c=0$ but $b \neq 0$ (or the other way around) then we have at least one eigenvector \mathbf{b}_{1} with eigenvalue $\lambda_{1}=1$ so if the solution initially is in the state i.e. $\mathbf{x}(0)=c_{1} \mathbf{b}_{1}$, with $c_{1} \neq 0$ then $\mathbf{x}(k)=c_{1} \mathbf{b}_{1}$, for all k which does not tend to 0 as $k \rightarrow \infty$. Hence the system is not stable.
Rem If $A=\left[\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right]$ then we do not have basis of eigenvectors so we can not use this method. It is, however, easy to see that $A^{k}=\left[\begin{array}{cc}1 & k b \\ 0 & 1\end{array}\right]$.
10. Determine whether $q\left(x_{1}, x_{2}\right)=x_{1}^{2}+3 x_{1} x_{2}+2 x_{2}^{2}=1$ is the equation of an ellipse.

Sol. $q(\mathbf{x})=\langle\mathbf{x}, A \mathbf{x}\rangle$, where $A=\left[\begin{array}{cc}1 & 3 / 2 \\ 3 / 2 & 2\end{array}\right]$. The characteristic polynomial is $(1-\lambda)(2-$入) $-9 / 4=\lambda^{2}-3 \lambda+2-9 / 4=(\lambda-3 / 2)^{2}-5 / 2$, so the eigenvalues are $\lambda_{1}=3 / 2-\sqrt{5 / 2}<0$ and $\lambda_{2}=3 / 2+\sqrt{5 / 2}>0$. Since A is symmetric we can diagonalize $A=Q D Q^{T}$ and we get $q(\mathbf{x})=\left\langle\mathbf{x}, Q D Q^{T} \mathbf{x}\right\rangle=\left\langle Q^{T} \mathbf{x}, D Q^{T} \mathbf{x}\right\rangle=\langle\mathbf{y}, D \mathbf{y}\rangle=\widetilde{q}(\mathbf{y})$, where $\mathbf{y}=Q^{T} \mathbf{x}$. Hence $q(\mathbf{x})=\widetilde{q}(\mathbf{y})=\lambda_{1} y_{1}^{2}+\lambda_{2} y_{2}^{2}=1$ is not an ellipse in the \mathbf{y} coordinates, which is just a rotation or reflection of the \mathbf{x} coordinates.
11. (a) Give an example of a 2×2 real matrices that have the same characteristic polynomial yet they are not similar. Explain.
(b) True or False: If a matrix fails to diagonalize over \mathbb{R}, it will diagonalize over \mathbb{C}. Explain.

Sol. (a) $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$.(b) False, e.g. $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$

