1. Let $A = \begin{bmatrix} 2 & 3 & 2 \\ 1 & 2 & 2 \\ 0 & -1 & -2 \end{bmatrix}$.

(a) Give the definition of $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is a *linearly independent* set' in terms of linear combinations or linear relations. Use this definition to show that $\mathcal{B} = \{\mathbf{e}_3, \mathbf{e}_1 + \mathbf{e}_2, \mathbf{e}_1 - \mathbf{e}_2\}$ is a *basis* of \mathbb{R}^3 .

(b) Determine the \mathcal{B} -matrix of A where \mathcal{B} is the basis in part (a).

(c) Determine all real numbers c for which the equation (for $\mathbf{x} \in \mathbb{R}^3$) $A\mathbf{x} = c\mathbf{x}$ has a non-trivial solution.

Sol. (a) $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$ are linearly independent if and only if the only solution to

is
$$c_1 = c_2 = \dots = c_k = 0$$
. If
 $c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_k \mathbf{v}_k = \mathbf{0}$.
 $c_1 \mathbf{e}_3 + c_2 (\mathbf{e}_1 + \mathbf{e}_2) + c_3 (\mathbf{e}_1 - \mathbf{e}_2) = (c_2 + c_3) \mathbf{e}_1 + (c_2 - c_3) \mathbf{e}_2 + c_1 \mathbf{e}_3 = \mathbf{0}$

then since $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ are linearly independent we must have $c_2 + c_3 = c_2 - c_3 = c_1 = 0$, and it is easy to see that this implies that $c_1 = c_2 = c_3 = 0$ which implies that $\mathbf{e}_3, \mathbf{e}_1 + \mathbf{e}_2, \mathbf{e}_1 - \mathbf{e}_2$ are linearly independent. Since it is three vectors in a three dimensional space this implies that they form a basis.

(b) A determines a linear transformation $T(\mathbf{x}) = A\mathbf{x}$. If we express \mathbf{x} and $T(\mathbf{x})$ in the basis $\mathbf{b}_1 = \mathbf{e}_3$, $\mathbf{b}_2 = \mathbf{e}_1 + \mathbf{e}_2$, $\mathbf{b}_3 = \mathbf{e}_1 - \mathbf{e}_2$, then the linear transformation of their coefficients;

has matrix B such that $\mathbf{d} = B\mathbf{c}$. Substituting \mathbf{b}_i in for \mathbf{x} we see that

$$B = \begin{bmatrix} | & | & | & | \\ [T(\mathbf{b}_{1})]_{\mathcal{B}} [T(\mathbf{b}_{2})]_{\mathcal{B}} [T(\mathbf{b}_{3})]_{\mathcal{B}} \end{bmatrix}$$

We have $T(\mathbf{b}_{1}) = \begin{bmatrix} 2\\ 2\\ -2 \end{bmatrix} = 2\mathbf{b}_{2} - 2\mathbf{b}_{1}, \ T(\mathbf{b}_{2}) = \begin{bmatrix} 5\\ 3\\ -1 \end{bmatrix} = 4\mathbf{b}_{2} + \mathbf{b}_{3} - \mathbf{b}_{1} \text{ and } T(\mathbf{b}_{3}) = \begin{bmatrix} -1\\ -1\\ 1 \end{bmatrix} = -\mathbf{b}_{2} + \mathbf{b}_{1}$
so $B = \begin{bmatrix} -2 & -1 & 1\\ 2 & 4 & -1\\ 0 & 1 & 0 \end{bmatrix}$. One sees that $T(\mathbf{b}_{1} + 2\mathbf{b}_{3}) = \mathbf{0}$ so 0 is an eigenvalue.
 $(c) \begin{vmatrix} 2-\lambda & 3 & 2\\ 1 & 2-\lambda & 2\\ 0 & -1 & -2-\lambda \end{vmatrix} = \begin{vmatrix} 2-\lambda & 2 & -\lambda\\ 1 & 1-\lambda & -\lambda\\ 0 & -1 & -2-\lambda \end{vmatrix} = \begin{vmatrix} -\lambda & \lambda & \lambda\\ 1 & 1-\lambda & -\lambda\\ 0 & -1 & -2-\lambda \end{vmatrix} = \lambda \begin{vmatrix} -1 & 1 & 1\\ 1 & 1-\lambda & -\lambda\\ 0 & -1 & -2-\lambda \end{vmatrix}$ $= \lambda \begin{vmatrix} -1 & 1 & 1\\ 1 & 1-\lambda & -\lambda\\ 0 & -1 & -2-\lambda \end{vmatrix} = -\lambda \begin{vmatrix} 2-\lambda & 1-\lambda\\ -1 & -2-\lambda \end{vmatrix} = -\lambda (\lambda^{2} - \lambda - 3) = -\lambda ((\lambda - 1/2)^{2} - 13/4).$

Hence the eigenvalues are 0 and $1/2 \pm \sqrt{21/4}$.

2. Let
$$A = \begin{bmatrix} 2 & 3 & 2 \\ 1 & 2 & 2 \\ 0 & 1 & 2 \\ 0 & -1 & -2 \end{bmatrix}$$

(a) Determine all vectors \mathbf{x} that satisfy the linear system $A\mathbf{x} = \mathbf{0}$.

(b) Explain why $W = \{ \mathbf{b} \in \mathbb{R}^4 ; A\mathbf{x} = \mathbf{b} \text{ is consistent} \}$ is a *subspace* of \mathbb{R}^4 .

(c) Let W be the set in part (b). Show that $\mathbf{b}_1 = 3\mathbf{e}_1 + 2\mathbf{e}_2 + \mathbf{e}_3 - \mathbf{e}_4 \in W$.

(d) Let \mathbf{b}_1 be as in part (c). Let \mathbf{x}_1 be **one** vector that satisfies $A\mathbf{x}_1 = \mathbf{b}_1$. Explain why the solution set of $A\mathbf{x} = \mathbf{b}_1$ equals the set of all vectors of the following form: \mathbf{x}_1 plus a solution of the equation in part (a).

Sol. (a) Row reduction on the augmented matrix gives

$$\begin{bmatrix} 2 & 3 & 2 & | & 0 \\ 1 & 2 & 2 & | & 0 \\ 0 & 1 & 2 & | & 0 \\ 0 & -1 & -2 & | & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 0 & -1 & -2 & | & 0 \\ 1 & 2 & 2 & | & 0 \\ 0 & 1 & 2 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 1 & 2 & 2 & | & 0 \\ 0 & 1 & 2 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 1 & 0 & -2 & | & 0 \\ 0 & 1 & 2 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$
ence the solution set is
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

Hence the solution set is $\begin{bmatrix} x_2 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} -2 \\ 1 \end{bmatrix}$.

(b) We need to show that $\mathbf{b} \in W$ and $\mathbf{d} \in W$ then $\mathbf{b} + \mathbf{d} \in W$ and $c\mathbf{b} \in W$ for any scaler c. If $\mathbf{b} \in W$ and $\mathbf{d} \in W$ then $\mathbf{b} = A\mathbf{x}$ and $\mathbf{d} = A\mathbf{y}$ for some \mathbf{x} and \mathbf{y} . Hence $\mathbf{b} + \mathbf{d} = A\mathbf{x} + A\mathbf{y} = A(\mathbf{x} + \mathbf{y})$ so $\mathbf{b} + \mathbf{d} \in W$. Similarly, if $\mathbf{b} \in W$ then $c\mathbf{b} = cA\mathbf{x} = A(c\mathbf{x})$ so $c\mathbf{b} \in W$.

(c) \mathbf{b}_1 is seen to three be the second column of A so it is equal to $A\mathbf{e}_2$. (d) Let \mathbf{x} be any solution to $A\mathbf{x} = \mathbf{b}_1$. Then $A(\mathbf{x} - \mathbf{x}_1) = A\mathbf{x} - A\mathbf{x}_1 = \mathbf{b}_1 - \mathbf{b}_1 = \mathbf{0}$ and hence $\mathbf{x} - \mathbf{x}_1$ is a solution to the linear system in (a).

3. (a) Let $A = \begin{bmatrix} 4 & -3 \\ -3 & -4 \end{bmatrix}$. Determine a diagonal matrix D, and an orthogonal matrix S for which $A = SDS^{-1}$. Multiply out SDS^{-1} to check that your answer is correct. (b) Let $B = \begin{bmatrix} 4 & 3 \\ -3 & -4 \end{bmatrix}$. Determine whether B is similar to the matrix A from part (a) in $\mathbb{R}^{2\times 2}$. Sol. (a) The characteristic polynomial is $(4-\lambda)(-4-\lambda) - 9 = \lambda^2 - 25 = (\lambda - 5)(\lambda + 5)$. We have Ker $(A+5I) = \text{Span}\{\begin{bmatrix} 1 \\ 3 \end{bmatrix}\}$ and Ker $(A-5I) = \text{Span}\{\begin{bmatrix} -3 \\ 1 \end{bmatrix}\}$. Let $S = \frac{1}{\sqrt{10}}\begin{bmatrix} 1 & -3 \\ 3 & 1 \end{bmatrix}$, $D = \begin{bmatrix} -5 & 0 \\ 0 & 5 \end{bmatrix}$.

(b) The characteristic polynomial is $(4 - \lambda)(-4 - \lambda) + 9 = \lambda^2 - 7 = (\lambda - \sqrt{7})(\lambda + \sqrt{7})$. Since similar matrices have the same eigenvalues *B* can not be similar to *A*.

4. Let P_4 be, as usual, the linear space of polynomials of degree ≤ 4 .

- (a) Specify an isomorphism $\Phi: P_4 \to \mathbb{R}^n$, for some *n*. Explain why it is an isomorphism.
- (b) True or False: Every linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ is an isomorphism. Explain.

(c) *True or False:* There exists an inner product on P_4 with the property that $\{1, t, t^2, t^3, t^4\}$ is an orthonormal set. **Explain**.

(d) (Convince yourself that $\mathcal{U} = \{2, 3-t, 4t-t^2, 5-t^3, 6-t^4\}$ is a basis for P_4 .) Determine the \mathcal{U} -coordinate vector of $t^4 + t$.

Sol. An isomorphism is an invertible linear transformation.

(a) Let Φ be the linear transformation taking polynomials $a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4$ to $(a_0, a_1, a_2, a_3, a_4) \in \mathbb{R}^5$. It is onto since one can pick any coefficients and it is one to one since the zero polynomial is the only polynomial with all the coefficients equal to 0.

(b) False, T has to be invertible.

(c) True, because one can compose with the isomorphism in (a) and take the standard inner product in \mathbb{R}^5 .

(d) It is a basis because the set in (c) is a basis and one can obtain it from that set. $t^4 + t = -(6 - t^4) + 3 \cdot 2 - (3 - t) + (3/2)2.$

5. (a) Let V be a linear space. Suppose that λ is an eigenvalue of the linear transformation $T: V \to V$. Derive the fact that λ^2 is an eigenvalue of T^2 .

(b) Determine all matrices in $\mathbb{R}^{3\times 3}$ that are both symmetric and orthogonal, and describe them geometrically. [Suggestion: Express the two conditions in terms of 'transpose'.]

Sol. (a) Since λ is an eigenvalue there is a $\mathbf{v} \neq \mathbf{0}$ such that $T\mathbf{v} = \lambda \mathbf{v}$. Hence $T^2\mathbf{v} = T(T(\mathbf{v})) = T(\lambda \mathbf{v}) = \lambda T(\mathbf{v}) = \lambda^2 \mathbf{v}$ which proves that λ^2 is an eigenvalue for T^2 .

(b) $A^T A = I$ and $A^T = A$ so $A^2 = I$. Moreover A is diagonalizable so $A = QDQ^T$, where D is diagonal and $Q^T Q = QQ^T = I$. Hence $A^2 = QDQ^T DQ^T = QD^2Q^T = I$ so $D^2 = Q^T IQ = I$. It follows that the eigenvalues of A are all -1 or 1. On the other if D is diagonal with ± 1 in the diagonals then $A = QDQ^T$ then $A^2 = Q^T D^2 Q = Q^T IQ = I$.

6. Determine the matrix (for the standard basis of \mathbb{R}^5) of the orthogonal projection of \mathbb{R}^5 onto the 'plane' with equations $x_1 - x_5 = 0$, $x_1 + x_2 + x_3 + x_4 = 0$.

Sol. We need to find an orthonormal set of vectors spanning the intersection of the two hyper-planes $W = \{ \mathbf{x} \in \mathbb{R}^5; x_1 - x_5 = 0, \text{ and } x_1 + x_2 + x_3 + x_4 = 0 \}$. First we find 3 linearly independent vectors. x_3, x_4 and x_5 are free variables so the solution to the system is

	x_1		0		0		1	
	x_2		-1		-1		-1	
	x_3	$= x_3$	1	$+x_{4}$	0	$+x_{5}$	0	
	x_4		0		1		0	
	x_5		0		0		1	
Nort we can use Cram Schmidt to a								

Next we can use Gram-Schmidt to construct an orthonormal set from these three vectors. However, one can be a bit clever about it to do less work. The first and second vector above lie in the subset $W_1 = \{(0, x_2, x_3, x_4, 0) \in \mathbb{R}^5; x_2+x_3+x_4=0\} \subset W$. It is easy two find two orthogonal vectors in the three dimensional subset $W'_1 = \{(x_2, x_3, x_4) \in \mathbb{R}^3; x_2+x_3+x_4=0\}$.

In fact we can take $\mathbf{v}'_1 = \begin{bmatrix} -1\\0\\1 \end{bmatrix}$ and $\mathbf{v}'_2 = \begin{bmatrix} 1\\-2\\1 \end{bmatrix}$ and then we get two orthogonal vectors in

W by setting the first and last component to be 0. Additionally we need one vector in $(x_1, x_2, x_3, x_4, x_5) \in W$ that is orthogonal to W_1 , and since the first and second component in W_1 is zero this means the vector (x_2, x_3, x_4) has to be orthogonal to the plane W'_1 , and hence be proportional to the normal (1, 1, 1) to this plane. Moreover we must have $x_1 = x_5$ so it must be of the form $(x_1, 1, 1, 1, x_5)$ but for this to lie in W we must have $x_1+1+1+1=0$ and hence must be (-3, 1, 1, 1, -3).

Hence we get three orthogonal vectors by
$$\mathbf{v}_1 = \begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ -3 \end{bmatrix}$, and we get

three orthonormal vectors by $\mathbf{u}_1 = \mathbf{v}_1/\|\mathbf{v}_1\|$, $\mathbf{u}_2 = \mathbf{v}_2/\|\mathbf{v}_2\|$, $\mathbf{u}_3 = \mathbf{v}_3/\|\mathbf{v}_3\|$. The projection is given by $\operatorname{Proj}_W(\mathbf{x}) = (\mathbf{u}_1 \cdot \mathbf{x})\mathbf{u}_1 + (\mathbf{u}_2 \cdot \mathbf{x})\mathbf{u}_2 + (\mathbf{u}_3 \cdot \mathbf{x})\mathbf{u}_3$. This can be written as a matrix product $\operatorname{Proj}_W(\mathbf{x}) = \mathbf{u}_1\mathbf{u}_1^T\mathbf{x} + \mathbf{u}_2\mathbf{u}_2^T\mathbf{x} + \mathbf{u}_3\mathbf{u}_3^T\mathbf{x} = (\mathbf{u}_1\mathbf{u}_1^T + \mathbf{u}_2\mathbf{u}_2^T + \mathbf{u}_3\mathbf{u}_3^T)\mathbf{x}$. Hence the matrix for the projection is $P = \mathbf{u}_1\mathbf{u}_1^T + \mathbf{u}_2\mathbf{u}_2^T + \mathbf{u}_3\mathbf{u}_3^T = QQ^T$, where $Q = \begin{bmatrix} \mathbf{u}_1^{\dagger} \mathbf{u}_2^{\dagger} \mathbf{u}_3^{\dagger} \\ \mathbf{u}_1^{\dagger} \mathbf{u}_2^{\dagger} \mathbf{u}_3^{\dagger} \end{bmatrix}$.

the matrix for the projection is $P = \mathbf{u}_1 \mathbf{u}_1^T + \mathbf{u}_2 \mathbf{u}_2^T + \mathbf{u}_3 \mathbf{u}_3^T = QQ^T$, where $Q = \begin{bmatrix} \mathbf{u}_1^T \mathbf{u}_2^T \mathbf{u}_3^T \\ \mathbf{u}_1^T \mathbf{u}_2^T \mathbf{u}_3^T \end{bmatrix}$. **7.** For which $a \in \mathbb{R}$, $b \in \mathbb{R}$ does the matrix $A = \begin{bmatrix} 2 & 0 & 0 \\ b & 1 & 0 \\ 0 & a & 1 \end{bmatrix}$ have an eigenbasis (for \mathbb{R}^3)?

When it does, specify an eigenbasis (depending on a and b). Sol. Since the matrix is triangular the eigenvalues are the diagonal elements 1 and 2. $(A - I)\mathbf{x} = \mathbf{0}$ is equivalent to $x_1 = 0$ and $ax_2 = 0$.

Hence if
$$a \neq 0$$
 Ker $(A - I) =$ Span $\left\{ \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$, and if $a = 0$ Ker $(A - I) =$ Span $\left\{ \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}$.
 $(A - 2I)\mathbf{x} = \mathbf{0}$ is equivalent to $bx_1 - x_2 = 0$ and $ax_2 - x_3 = 0$.
Ker $(A - 2I) =$ Span $\left\{ \begin{bmatrix} 1\\b\\ab \end{bmatrix} \right\}$. Hence A has an eigenbasis only if $a = 0$.

8. Let V be Span $\{1, \sin x, \cos x\}$. The dimension of V is 3.

(c) Let D denote the linear operator on V given by D(f) = f'. Determine the complex eigenvalues of D-that includes the real ones!-and the corresponding eigenspaces.

Sol. The matrix is
$$A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$
. The characteristic polynomial is $\lambda(\lambda^2 + 1) = \lambda(\lambda + i)(\lambda - i)$.
Ker $(A - iI) =$ Span $\{\begin{bmatrix} 0 \\ i \\ 1 \end{bmatrix}\}$, Ker $(A + iI) =$ Span $\{\begin{bmatrix} 0 \\ -i \\ 1 \end{bmatrix}\}$ and Ker $(A - 0I) =$ Span $\{\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}\}$,

so the eigenvectors are $i \sin x + \cos x$ and $-i \sin x + \cos x$ and 1.

9. Let $A = \begin{bmatrix} 1 & b \\ c & 1 \end{bmatrix}$, where b and c are real scalars. Determine the set of values of b and c for which the dynamical system $\mathbf{x}(t+1) = A\mathbf{x}(t)$ is asymptotically stable

(meaning: for all initial states, the state vector tends to **0**, as $t \to \infty$.)

Sol. The characteristic polynomial is $(1 - \lambda)^2 - bc = (\lambda - 1 - \sqrt{bc})(\lambda - 1 + \sqrt{bc})$.

If bc > 0 the eigenvalues are $\lambda = 1 \pm \sqrt{bc}$, if bc < 0 then $\lambda = 1 \pm i\sqrt{|bc|}$ and if bc = 0 $\lambda = 1$. If $bc \neq 0$ the eigenvalues are distinct and therefore we have a basis of eigenvectors \mathbf{b}_1 and \mathbf{b}_2 . If $bc \neq 0$ we can therefore write $\mathbf{x}(0) = c_1\mathbf{b}_1 + c_2\mathbf{b}_2$. It follows that $\mathbf{x}(k) = A^k\mathbf{x}(0) = c_1A^k\mathbf{b}_1 + c_2A^k\mathbf{b}_2 = c_1\lambda_1^k\mathbf{b}_1 + c_2\lambda_2^k\mathbf{b}_2$. Hence $\mathbf{x}(k) \to 0$ as $k \to \infty$ only if $|\lambda_1| < 1$ and $|\lambda_2| < 1$. If $bc \neq 0$ at least one eigenvalue satisfy $|\lambda| \geq 1$ so it is not asymptotically stable.

If b = c = 0 the matrix is the identity so the eigenvalues are both 0 and it is not stable. If c = 0 but $b \neq 0$ (or the other way around) then we have at least one eigenvector \mathbf{b}_1 with eigenvalue $\lambda_1 = 1$ so if the solution initially is in the state i.e. $\mathbf{x}(0) = c_1 \mathbf{b}_1$, with $c_1 \neq 0$ then $\mathbf{x}(k) = c_1 \mathbf{b}_1$, for all k which does not tend to 0 as $k \to \infty$. Hence the system is not stable. **Rem** If $A = \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix}$ then we do not have basis of eigenvectors so we can not use this method.

It is, however, easy to see that $A^k = \begin{bmatrix} 1 & kb \\ 0 & 1 \end{bmatrix}$.

10. Determine whether $q(x_1, x_2) = x_1^2 + 3x_1x_2 + 2x_2^2 = 1$ is the equation of an ellipse. Sol. $q(\mathbf{x}) = \langle \mathbf{x}, A\mathbf{x} \rangle$, where $A = \begin{bmatrix} 1 & 3/2 \\ 3/2 & 2 \end{bmatrix}$. The characteristic polynomial is $(1 - \lambda)(2 - \lambda) - 9/4 = \lambda^2 - 3\lambda + 2 - 9/4 = (\lambda - 3/2)^2 - 5/2$, so the eigenvalues are $\lambda_1 = 3/2 - \sqrt{5/2} < 0$ and $\lambda_2 = 3/2 + \sqrt{5/2} > 0$. Since A is symmetric we can diagonalize $A = QDQ^T$ and we get $q(\mathbf{x}) = \langle \mathbf{x}, QDQ^T\mathbf{x} \rangle = \langle Q^T\mathbf{x}, DQ^T\mathbf{x} \rangle = \langle \mathbf{y}, D\mathbf{y} \rangle = \tilde{q}(\mathbf{y})$, where $\mathbf{y} = Q^T\mathbf{x}$. Hence $q(\mathbf{x}) = \tilde{q}(\mathbf{y}) = \lambda_1 y_1^2 + \lambda_2 y_2^2 = 1$ is not an ellipse in the **y** coordinates, which is just a rotation or reflection of the **x** coordinates.

11. (a) Give an example of a 2×2 real matrices that have the same characteristic polynomial yet they are not similar. Explain.

(b) True or False: If a matrix fails to diagonalize over \mathbb{R} , it will diagonalize over \mathbb{C} . Explain. **Sol.** (a) $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. (b) False, e.g. $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$