1. Let $A=\left[\begin{array}{ccc}2 & 3 & 2 \\ 1 & 2 & 2 \\ 0 & -1 & -2\end{array}\right]$.
(a) Give the definition of ' $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ is a linearly independent set' in terms of linear combinations or linear relations. Use this definition to show that $\mathcal{B}=\left\{\mathbf{e}_{3}, \mathbf{e}_{1}+\mathbf{e}_{2}, \mathbf{e}_{1}-\mathbf{e}_{2}\right\}$ is a basis of \mathbb{R}^{3}.
(b) Determine the \mathcal{B}-matrix of A where \mathcal{B} is the basis in part (a).
(c) Determine all real numbers c for which the equation (for $\mathbf{x} \in \mathbb{R}^{3}$) $A \mathbf{x}=c \mathbf{x}$ has a non-trivial solution.
Sol. (a) $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are linearly independent if and only if the only solution to
is $c_{1}=c_{2}=\cdots=c_{k}=0$. If $\quad c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{k} \mathbf{v}_{k}=\mathbf{0}$.

$$
c_{1} \mathbf{e}_{3}+c_{2}\left(\mathbf{e}_{1}+\mathbf{e}_{2}\right)+c_{3}\left(\mathbf{e}_{1}-\mathbf{e}_{2}\right)=\left(c_{2}+c_{3}\right) \mathbf{e}_{1}+\left(c_{2}-c_{3}\right) \mathbf{e}_{2}+c_{1} \mathbf{e}_{3}=\mathbf{0}
$$

then since $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ are linearly independent we must have $c_{2}+c_{3}=c_{2}-c_{3}=c_{1}=0$, and it is easy to see that this implies that $c_{1}=c_{2}=c_{3}=0$ which implies that $\mathbf{e}_{3}, \mathbf{e}_{1}+\mathbf{e}_{2}, \mathbf{e}_{1}-\mathbf{e}_{2}$ are linearly independent. Since it is three vectors in a three dimensional space this implies that they form a basis.
(b) A determines a linear transformation $T(\mathbf{x})=A \mathbf{x}$. If we express \mathbf{x} and $T(\mathbf{x})$ in the basis $\mathbf{b}_{1}=\mathbf{e}_{3}, \mathbf{b}_{2}=\mathbf{e}_{1}+\mathbf{e}_{2}, \mathbf{b}_{3}=\mathbf{e}_{1}-\mathbf{e}_{2}$, then the linear transformation of their coefficients;

$$
\begin{gathered}
\mathbf{x}=c_{1} \mathbf{b}_{1}+c_{2} \mathbf{b}_{2}+c_{3} \mathbf{b}_{3} \xrightarrow{A} T(\mathbf{x})=d_{1} \mathbf{b}_{1}+d_{2} \mathbf{b}_{2}+d_{3} \mathbf{b}_{3} \\
\downarrow \\
{[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \quad \xrightarrow{B} \quad[T(\mathbf{x})]_{\mathcal{B}}=\left[\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right]}
\end{gathered}
$$

has matrix B such that $\mathbf{d}=B \mathbf{c}$. Substituting \mathbf{b}_{i} in for \mathbf{x} we see that

$$
B=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
{\left[T\left(\mathbf{b}_{1}\right)\right]_{\mathcal{B}}} & {\left[T\left(\mathbf{b}_{2}\right)\right]_{\mathcal{B}}\left[T\left(\mathbf{b}_{3}\right)\right]_{\mathcal{B}}} \\
\mid & \mid & \mid
\end{array}\right]
$$

We have $T\left(\mathbf{b}_{1}\right)=\left[\begin{array}{c}2 \\ 2 \\ -2\end{array}\right]=2 \mathbf{b}_{2}-2 \mathbf{b}_{1}, T\left(\mathbf{b}_{2}\right)=\left[\begin{array}{c}5 \\ 3 \\ -1\end{array}\right]=4 \mathbf{b}_{2}+\mathbf{b}_{3}-\mathbf{b}_{1}$ and $T\left(\mathbf{b}_{3}\right)=\left[\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right]=-\mathbf{b}_{2}+\mathbf{b}_{1}$ so $B=\left[\begin{array}{ccc}-2 & -1 & 1 \\ 2 & 4 & -1 \\ 0 & 1 & 0\end{array}\right]$. One sees that $T\left(\mathbf{b}_{1}+2 \mathbf{b}_{3}\right)=\mathbf{0}$ so 0 is an eigenvalue.
(c) $\left|\begin{array}{ccc}2-\lambda & 3 & 2 \\ 1 & 2-\lambda & 2 \\ 0 & -1 & -2-\lambda\end{array}\right|=\left|\begin{array}{ccc}2-\lambda & 2 & -\lambda \\ 1 & 1-\lambda & -\lambda \\ 0 & -1 & -2-\lambda\end{array}\right|=\left|\begin{array}{ccc}-\lambda & \lambda & \lambda \\ 1 & 1-\lambda & -\lambda \\ 0 & -1 & -2-\lambda\end{array}\right|=\lambda\left|\begin{array}{ccc}-1 & 1 & 1 \\ 1 & 1-\lambda & -\lambda \\ 0 & -1 & -2-\lambda\end{array}\right|$

$$
=\lambda\left|\begin{array}{ccc}
-1 & 1 & 1 \\
0 & 2-\lambda & 1-\lambda \\
0 & -1 & -2-\lambda
\end{array}\right|=-\lambda\left|\begin{array}{cc}
2-\lambda & 1-\lambda \\
-1 & -2-\lambda
\end{array}\right|=-\lambda\left(\lambda^{2}-\lambda-3\right)=-\lambda\left((\lambda-1 / 2)^{2}-13 / 4\right) .
$$

Hence the eigenvalues are 0 and $1 / 2 \pm \sqrt{21 / 4}$.
2. Let $A=\left[\begin{array}{ccc}2 & 3 & 2 \\ 1 & 2 & 2 \\ 0 & 1 & 2 \\ 0 & -1 & -2\end{array}\right]$
(a) Determine all vectors \mathbf{x} that satisfy the linear system $A \mathbf{x}=\mathbf{0}$.
(b) Explain why $W=\left\{\mathbf{b} \in \mathbb{R}^{4} ; A \mathbf{x}=\mathbf{b}\right.$ is consistent $\}$ is a subspace of \mathbb{R}^{4}.
(c) Let W be the set in part (b). Show that $\mathbf{b}_{1}=3 \mathbf{e}_{1}+2 \mathbf{e}_{2}+\mathbf{e}_{3}-\mathbf{e}_{4} \in W$.
(d) Let \mathbf{b}_{1} be as in part (c). Let \mathbf{x}_{1} be one vector that satisfies $A \mathbf{x}_{1}=\mathbf{b}_{1}$. Explain why the solution set of $A \mathbf{x}=\mathbf{b}_{1}$ equals the set of all vectors of the following form: \mathbf{x}_{1} plus a solution of the equation in part (a).
Sol. (a) Row reduction on the augmented matrix gives

$$
\left[\begin{array}{ccc:c}
2 & 3 & 2 & 0 \\
1 & 2 & 2 & 0 \\
0 & 1 & 2 & 0 \\
0 & -1 & -2 & 0
\end{array}\right] \Leftrightarrow\left[\begin{array}{ccc|c}
0 & -1 & -2 & 0 \\
1 & 2 & 2 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \Leftrightarrow\left[\begin{array}{lll:l}
1 & 2 & 2 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \Leftrightarrow\left[\begin{array}{ccc|c}
1 & 0 & -2 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Hence the solution set is $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=x_{3}\left[\begin{array}{c}2 \\ -2 \\ 1\end{array}\right]$.
(b) We need to show that $\mathbf{b} \in W$ and $\mathbf{d} \in W$ then $\mathbf{b}+\mathbf{d} \in W$ and $c \mathbf{b} \in W$ for any scaler c. If $\mathbf{b} \in W$ and $\mathbf{d} \in W$ then $\mathbf{b}=A \mathbf{x}$ and $\mathbf{d}=A \mathbf{y}$ for some \mathbf{x} and \mathbf{y}. Hence $\mathbf{b}+\mathbf{d}=A \mathbf{x}+A \mathbf{y}=$ $A(\mathbf{x}+\mathbf{y})$ so $\mathbf{b}+\mathbf{d} \in W$. Similarly, if $\mathbf{b} \in W$ then $c \mathbf{b}=c A \mathbf{x}=A(c \mathbf{x})$ so $c \mathbf{b} \in W$.
(c) \mathbf{b}_{1} is seen to thre be the second column of A so it is equal to $A \mathbf{e}_{2}$.
(d) Let \mathbf{x} be any solution to $A \mathbf{x}=\mathbf{b}_{1}$. Then $A\left(\mathbf{x}-\mathbf{x}_{1}\right)=A \mathbf{x}-A \mathbf{x}_{1}=\mathbf{b}_{1}-\mathbf{b}_{1}=\mathbf{0}$ and hence $\mathbf{x}-\mathbf{x}_{1}$ is a solution to the linear system in (a).
3. (a) Let $A=\left[\begin{array}{rr}4 & -3 \\ -3 & -4\end{array}\right]$. Determine a diagonal matrix D, and an orthogonal matrix S for which $A=S D S^{-1}$. Multiply out $S D S^{-1}$ to check that your answer is correct.
(b) Let $B=\left[\begin{array}{cc}4 & 3 \\ -3 & -4\end{array}\right]$. Determine whether B is similar to the matrix A from part (a) in $\mathbb{R}^{2 \times 2}$.

Sol. (a) The characteristic polynomial is $(4-\lambda)(-4-\lambda)-9=\lambda^{2}-25=(\lambda-5)(\lambda+5)$. We have $\operatorname{Ker}(A+5 I)=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 3\end{array}\right]\right\}$ and $\operatorname{Ker}(A-5 I)=\operatorname{Span}\left\{\left[\begin{array}{c}-3 \\ 1\end{array}\right]\right\}$.
Let $S=\frac{1}{\sqrt{10}}\left[\begin{array}{cc}1 & -3 \\ 3 & 1\end{array}\right], D=\left[\begin{array}{cc}-5 & 0 \\ 0 & 5\end{array}\right]$.
(b) The characteristic polynomial is $(4-\lambda)(-4-\lambda)+9=\lambda^{2}-7=(\lambda-\sqrt{7})(\lambda+\sqrt{7})$. Since similar matrices have the same eigenvalues B can not be similar to A.
4. Let P_{4} be, as usual, the linear space of polynomials of degree ≤ 4.
(a) Specify an isomorphism $\Phi: P_{4} \rightarrow \mathbb{R}^{n}$, for some n. Explain why it is an isomorphism.
(b) True or False: Every linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is an isomorphism. Explain.
(c) True or False: There exists an inner product on P_{4} with the property that $\left\{1, t, t^{2}, t^{3}, t^{4}\right\}$ is an orthonormal set. Explain.
(d) (Convince yourself that $\mathcal{U}=\left\{2,3-t, 4 t-t^{2}, 5-t^{3}, 6-t^{4}\right\}$ is a basis for P_{4}.) Determine the \mathcal{U}-coordinate vector of $t^{4}+t$.
Sol. An isomorphism is an invertible linear transformation.
(a) Let Φ be the linear transformation taking polynomials $a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}$ to $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}\right) \in \mathbb{R}^{5}$. It is onto since one can pick any coefficients and it is one to one since the zero polynomial is the only polynomial with all the coefficients equal to 0 .
(b) False, T has to be invertible.
(c) True, because one can compose with the isomorphism in (a) and take the standard inner product in \mathbb{R}^{5}.
(d) It is a basis because the set in (c) is a basis and one can obtain it from that set. $t^{4}+t=-\left(6-t^{4}\right)+3 \cdot 2-(3-t)+(3 / 2) 2$.
5. (a) Let V be a linear space. Suppose that λ is an eigenvalue of the linear transformation $T: V \rightarrow V$. Derive the fact that λ^{2} is an eigenvalue of T^{2}.
(b) Determine all matrices in $\mathbb{R}^{3 \times 3}$ that are both symmetric and orthogonal, and describe them geometrically. [Suggestion: Express the two conditions in terms of 'transpose'.]
Sol. (a) Since λ is an eigenvalue there is a $\mathbf{v} \neq \mathbf{0}$ such that $T \mathbf{v}=\lambda \mathbf{v}$. Hence $T^{2} \mathbf{v}=$ $T(T(\mathbf{v}))=T(\lambda \mathbf{v})=\lambda T(\mathbf{v})=\lambda^{2} \mathbf{v}$ which proves that λ^{2} is an eigenvalue for T^{2}.
(b) $A^{T} A=I$ and $A^{T}=A$ so $A^{2}=I$. Moreover A is diagonalizable so $A=Q D Q^{T}$, where D is diagonal and $Q^{T} Q=Q Q^{T}=I$. Hence $A^{2}=Q D Q^{T} D Q^{T}=Q D^{2} Q^{T}=I$ so $D^{2}=Q^{T} I Q=I$. It follows that the eigenvalues of A are all -1 or 1 . On the other if D is diagonal with ± 1 in the diagonals then $A=Q D Q^{T}$ then $A^{2}=Q^{T} D^{2} Q=Q^{T} I Q=I$.
6. Determine the matrix (for the standard basis of \mathbb{R}^{5}) of the orthogonal projection of \mathbb{R}^{5} onto the 'plane' with equations $x_{1}-x_{5}=0, x_{1}+x_{2}+x_{3}+x_{4}=0$.
Sol. We need to find an orthonormal set of vectors spanning the intersection of the two hyper-planes $W=\left\{\mathbf{x} \in \mathbb{R}^{5} ; x_{1}-x_{5}=0\right.$, and $\left.x_{1}+x_{2}+x_{3}+x_{4}=0\right\}$. First we find 3 linearly independent vectors. x_{3}, x_{4} and x_{5} are free variables so the solution to the system is

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=x_{3}\left[\begin{array}{c}
0 \\
-1 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
0 \\
-1 \\
0 \\
1 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
1 \\
-1 \\
0 \\
0 \\
1
\end{array}\right] .
$$

Next we can use Gram-Schmidt to construct an orthonormal set from these three vectors. However, one can be a bit clever about it to do less work. The first and second vector above lie in the subset $W_{1}=\left\{\left(0, x_{2}, x_{3}, x_{4}, 0\right) \in \mathbb{R}^{5} ; x_{2}+x_{3}+x_{4}=0\right\} \subset W$. It is easy two find two orthogonal vectors in the three dimensional subset $W_{1}^{\prime}=\left\{\left(x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{3} ; x_{2}+x_{3}+x_{4}=0\right\}$.
In fact we can take $\mathbf{v}_{1}^{\prime}=\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$ and $\mathbf{v}_{2}^{\prime}=\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]$ and then we get two orthogonal vectors in
W by setting the first and last component to be 0 . Additionally we need one vector in $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in W$ that is orthogonal to W_{1}, and since the first and second component in W_{1} is zero this means the vector $\left(x_{2}, x_{3}, x_{4}\right)$ has to be orthogonal to the plane W_{1}^{\prime}, and hence be proportional to the normal $(1,1,1)$ to this plane. Moreover we must have $x_{1}=x_{5}$ so it must be of the form $\left(x_{1}, 1,1,1, x_{5}\right)$ but for this to lie in W we must have $x_{1}+1+1+1=0$ and hence must be $(-3,1,1,1,-3)$.
Hence we get three orthogonal vectors by $\mathbf{v}_{1}=\left[\begin{array}{c}0 \\ -1 \\ 0 \\ 1 \\ 0\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}0 \\ 1 \\ -2 \\ 1 \\ 0\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}-3 \\ 1 \\ 1 \\ 1 \\ -3\end{array}\right]$, and we get three orthonormal vectors by $\mathbf{u}_{1}=\mathbf{v}_{1} /\left\|\mathbf{v}_{1}\right\|, \mathbf{u}_{2}=\mathbf{v}_{2} /\left\|\mathbf{v}_{2}\right\|, \mathbf{u}_{3}=\mathbf{v}_{3} /\left\|\mathbf{v}_{3}\right\|$.
The projection is given by $\operatorname{Proj}_{W}(\mathbf{x})=\left(\mathbf{u}_{1} \cdot \mathbf{x}\right) \mathbf{u}_{1}+\left(\mathbf{u}_{2} \cdot \mathbf{x}\right) \mathbf{u}_{2}+\left(\mathbf{u}_{3} \cdot \mathbf{x}\right) \mathbf{u}_{3}$. This can be written as a matrix product $\operatorname{Proj}_{W}(\mathbf{x})=\mathbf{u}_{1} \mathbf{u}_{1}^{T} \mathbf{x}+\mathbf{u}_{2} \mathbf{u}_{2}^{T} \mathbf{x}+\mathbf{u}_{3} \mathbf{u}_{3}^{T} \mathbf{x}=\left(\mathbf{u}_{1} \mathbf{u}_{1}^{T}+\mathbf{u}_{2} \mathbf{u}_{2}^{T}+\mathbf{u}_{3} \mathbf{u}_{3}^{T}\right) \mathbf{x}$. Hence the matrix for the projection is $P=\mathbf{u}_{1} \mathbf{u}_{1}^{T}+\mathbf{u}_{2} \mathbf{u}_{2}^{T}+\mathbf{u}_{3} \mathbf{u}_{3}^{T}=Q Q^{T}$, where $Q=\left[\begin{array}{ccc}1 & 1 & 1 \\ \mathbf{u}_{1} & \mathbf{u}_{2} \\ 1 & 1 & 1\end{array}\right]$.
7. For which $a \in \mathbb{R}, b \in \mathbb{R}$ does the matrix $A=\left[\begin{array}{lll}2 & 0 & 0 \\ b & 1 & 0 \\ 0 & a & 1\end{array}\right]$ have an eigenbasis (for \mathbb{R}^{3})?

When it does, specify an eigenbasis (depending on a and b).
Sol. Since the matrix is triangular the eigenvalues are the diagonal elements 1 and 2. $(A-I) \mathbf{x}=\mathbf{0}$ is equivalent to $x_{1}=0$ and $a x_{2}=0$.
Hence if $a \neq 0 \operatorname{Ker}(A-I)=\operatorname{Span}\left\{\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$, and if $a=0 \operatorname{Ker}(A-I)=\operatorname{Span}\left\{\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$. $(A-2 I) \mathbf{x}=\mathbf{0}$ is equivalent to $b x_{1}-x_{2}=0$ and $a x_{2}-x_{3}=0$.
$\operatorname{Ker}(A-2 I)=\operatorname{Span}\left\{\left[\begin{array}{c}1 \\ b \\ a b\end{array}\right]\right\}$. Hence A has an eigenbasis only if $a=0$.
8. Let V be $\operatorname{Span}\{1, \sin x, \cos x\}$. The dimension of V is 3 .
(c) Let D denote the linear operator on V given by $D(f)=f^{\prime}$. Determine the complex eigenvalues of D-that includes the real ones!-and the corresponding eigenspaces.
Sol. The matrix is $A=\left[\begin{array}{rrr}0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0\end{array}\right]$. The characteristic polynomial is $\lambda\left(\lambda^{2}+1\right)=\lambda(\lambda+i)(\lambda-i)$.
$\operatorname{Ker}(A-i I)=\operatorname{Span}\left\{\left[\begin{array}{l}0 \\ i \\ 1\end{array}\right]\right\}, \operatorname{Ker}(A+i I)=\operatorname{Span}\left\{\left[\begin{array}{c}0 \\ -i \\ 1\end{array}\right]\right\}$ and $\operatorname{Ker}(A-0 I)=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}$, so the eigenvectors are $i \sin x+\cos x$ and $-i \sin x+\cos x$ and 1 .
9. Let $A=\left[\begin{array}{ll}1 & b \\ c & 1\end{array}\right]$, where b and c are real scalars. Determine the set of values of b and c for which the dynamical system $\mathbf{x}(t+1)=A \mathbf{x}(t)$ is asymptotically stable (meaning: for all initial states, the state vector tends to $\mathbf{0}$, as $t \rightarrow \infty$.)
Sol. The characteristic polynomial is $(1-\lambda)^{2}-b c=(\lambda-1-\sqrt{b c})(\lambda-1+\sqrt{b c})$.
If $b c>0$ the eigenvalues are $\lambda=1 \pm \sqrt{b c}$, if $b c<0$ then $\lambda=1 \pm i \sqrt{|b c|}$ and if $b c=0 \lambda=1$. If $b c \neq 0$ the eigenvalues are distinct and therefore we have a basis of eigenvectors \mathbf{b}_{1} and \mathbf{b}_{2}. If $b c \neq 0$ we can therefore write $\mathbf{x}(0)=c_{1} \mathbf{b}_{1}+c_{2} \mathbf{b}_{2}$. It follows that $\mathbf{x}(k)=A^{k} \mathbf{x}(0)=$ $c_{1} A^{k} \mathbf{b}_{1}+c_{2} A^{k} \mathbf{b}_{2}=c_{1} \lambda_{1}^{k} \mathbf{b}_{1}+c_{2} \lambda_{2}^{k} \mathbf{b}_{2}$. Hence $\mathbf{x}(k) \rightarrow 0$ as $k \rightarrow \infty$ only if $\left|\lambda_{1}\right|<1$ and $\left|\lambda_{2}\right|<1$. If $b c \neq 0$ at least one eigenvalue satisfy $|\lambda| \geq 1$ so it is not asymptotically stable.
If $b=c=0$ the matrix is the identity so the eigenvalues are both 0 and it is not stable.
If $c=0$ but $b \neq 0$ (or the other way around) then we have at least one eigenvector \mathbf{b}_{1} with eigenvalue $\lambda_{1}=1$ so if the solution initially is in the state i.e. $\mathbf{x}(0)=c_{1} \mathbf{b}_{1}$, with $c_{1} \neq 0$ then $\mathbf{x}(k)=c_{1} \mathbf{b}_{1}$, for all k which does not tend to 0 as $k \rightarrow \infty$. Hence the system is not stable.
Rem If $A=\left[\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right]$ then we do not have basis of eigenvectors so we can not use this method. It is, however, easy to see that $A^{k}=\left[\begin{array}{cc}1 & k b \\ 0 & 1\end{array}\right]$.
10. Determine whether $q\left(x_{1}, x_{2}\right)=x_{1}^{2}+3 x_{1} x_{2}+2 x_{2}^{2}=1$ is the equation of an ellipse.

Sol. $q(\mathbf{x})=\langle\mathbf{x}, A \mathbf{x}\rangle$, where $A=\left[\begin{array}{cc}1 & 3 / 2 \\ 3 / 2 & 2\end{array}\right]$. The characteristic polynomial is $(1-\lambda)(2-$入) $-9 / 4=\lambda^{2}-3 \lambda+2-9 / 4=(\lambda-3 / 2)^{2}-5 / 2$, so the eigenvalues are $\lambda_{1}=3 / 2-\sqrt{5 / 2}<0$ and $\lambda_{2}=3 / 2+\sqrt{5 / 2}>0$. Since A is symmetric we can diagonalize $A=Q D Q^{T}$ and we get $q(\mathbf{x})=\left\langle\mathbf{x}, Q D Q^{T} \mathbf{x}\right\rangle=\left\langle Q^{T} \mathbf{x}, D Q^{T} \mathbf{x}\right\rangle=\langle\mathbf{y}, D \mathbf{y}\rangle=\widetilde{q}(\mathbf{y})$, where $\mathbf{y}=Q^{T} \mathbf{x}$. Hence $q(\mathbf{x})=\widetilde{q}(\mathbf{y})=\lambda_{1} y_{1}^{2}+\lambda_{2} y_{2}^{2}=1$ is not an ellipse in the \mathbf{y} coordinates, which is just a rotation or reflection of the \mathbf{x} coordinates.
11. (a) Give an example of a 2×2 real matrices that have the same characteristic polynomial yet they are not similar. Explain.
(b) True or False: If a matrix fails to diagonalize over \mathbb{R}, it will diagonalize over \mathbb{C}. Explain.

Sol. (a) $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$. (b) False, e.g. $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$

