1. (15 points) Find the quadratic polynomial $p(t)=a+b t+c t^{2}$ which best fits the data:

t	$y(t)$
-2	-4
-1	-1
0	0
1	0
2	0

2. (15 points) The matrix

$$
A=\frac{1}{9}\left[\begin{array}{ccc}
8 & 2 & -2 \\
2 & 5 & 4 \\
-2 & 4 & 5
\end{array}\right]
$$

is the matrix of the orthogonal projection onto some subspace $V \subset \mathbb{R}^{3}$.
(a) Find an orthonormal basis for V.
(b) Find an orthonormal basis for V^{\perp}.
(c) Find the matrix P of the orthogonal projection onto V^{\perp}.
3. (15 points) For the ellipse

$$
6 x_{1}^{2}+4 x_{1} x_{2}+3 x_{2}^{2}=1
$$

find:
(a) the principal axes,
(b) the equation of the ellipse in the coordinate system given by the principal axes, and
(c) the lengths of the semiaxes.
4. (20 points) Consider the following quadratic form in \mathbb{R}^{2} :

$$
q(\vec{x})=q\left(x_{1}, x_{2}\right)=\vec{x}^{T} A \vec{x}=2 x_{1}^{2}-4 x_{1} x_{2}+5 x_{2}^{2}, \quad A=\left[\begin{array}{cc}
2 & -2 \\
-2 & 5
\end{array}\right] .
$$

Define also

$$
\begin{equation*}
\langle\vec{v}, \vec{w}\rangle=\vec{v}^{T} A \vec{w}=2 v_{1} w_{1}-2 v_{1} w_{2}-2 v_{2} w_{1}+5 v_{2} w_{2} \tag{1}
\end{equation*}
$$

Observe that $q(\vec{x})=\langle\vec{x}, \vec{x}\rangle$.
(a) Suppose we set out to prove that $\langle\vec{v}, \vec{w}\rangle$ is an inner product in \mathbb{R}^{2}.

Assume as known that, for any vectors $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^{2}$ and scalar c,

- $\langle\vec{v}, \vec{w}\rangle=\langle\vec{w}, \vec{v}\rangle$,
- $\langle\vec{u}+\vec{v}, \vec{w}\rangle=\langle\vec{u}, \vec{w}\rangle+\langle\vec{v}, \vec{w}\rangle$, and
- $\langle c \vec{v}, \vec{w}\rangle=c\langle\vec{v}, \vec{w}\rangle$.

What else needs to be shown in order to complete the proof that $\langle\vec{v}, \vec{w}\rangle$ is an inner product? State it and prove it. [Hint: you will have to determine what type of quadratic form q is.]
(b) By (a), \mathbb{R}^{2} has an inner product given by (1). Determine whether or not the standard basis $\mathfrak{E}=\left\{\vec{e}_{1}, \vec{e}_{2}\right\}$ is an orthonormal basis of \mathbb{R}^{2} with respect to the inner product (1) and, if not, find an orthonormal basis $\mathfrak{U}=\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$.
(This page intentionally left blank)
5. TRUE OR FALSE. (5 points each) Justify your answers!
(a) If A and B are 2×2 matrices then the eigenvalues of $A B$ and $B A$ are the same. [Hint. Compare the characteristic polynomials of $A B$ and $B A$.]
(b) $A=\left[\begin{array}{cc}3 / 5 & -4 / 5 \\ -4 / 5 & -3 / 5\end{array}\right]$ is the matrix of a reflection. [Hint. How can we decide if A is a reflection using its eigenvalues and eigenvectors?]
(c) If $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{5}$ is a linear transformation then there is a basis \mathfrak{B} of \mathbb{R}^{5} such that $[T]_{\mathfrak{B}}=I_{5}$.
(d) If $V \subset \mathbb{R}^{n}$ is an arbitrary subspace then there exists a matrix A such that $\operatorname{Im}(A)=V$.
(e) If A, B are $n \times n$ (symmetric) positive definite matrices, then $A+B$ is also positive definite. [Hint. Do not reason in terms of eigenvalues.]
(f) If $A^{T} \vec{b}=\overrightarrow{0}$ then system $A \vec{x}=\vec{b}$ is consistent.
(g) If $A_{2 \times 2}$ is the matrix of a shear then $A^{2}+I_{2}=2 A$. [Hint. Choose an appropriate change of basis taking A into a simpler matrix B and reason in terms of B first, then revert back to the matrix A.]

