
SOLUTION KEY TO THE LINEAR ALGEBRA
FINAL EXAM

(1) We find a least squares solution to

A~x = ~y or


1 −2 (−2)2

1 −1 (−1)2

1 0 02

1 1 12

1 2 22


a

b
c

 =


−4
−1
0
0
0

 .

The normal equation is

AT A~x∗ = AT~y = ~y∗ or

 5 0 10
0 10 0
10 0 34

a∗
b∗
c∗

 =

 −5
9

−17

 .

The least-squares solution is

~x∗ =

a∗
b∗
c∗

 =
1

10

 0
9
−5


so the sought-after polynomial is p(t) = 9

10
t− 1

2
t2.

(2) (a)

(1) rref(A) =

1 0 −1
2

0 1 1
0 0 0


So a basis for V = Im(A) is given by the first two columns
of A. A routine application of the Gram-Schmidt pro-
cess to these two columns yields the orthonormal basis 1

3
√

2

 4
1
−1

 , 1√
2

0
1
1

. Another basis is

1
3

2
2
1

 , 1
3

 2
−1
−1

.
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(b) Since A is a projection matrix onto V , Ker(A) = V ⊥.

From (1), the vector

 1
2
−1
1

 is a basis for Ker(A) so an

orthonormal basis consists of the vector 1
3

−1
2
−2

.

(c)

P =
1

3

−1
2
−2

 1

3

[
−1 2 −2

]
=

1

9

 1 −2 2
−2 4 −4
2 −4 4

 .

On the other hand, it is geometrically obvious that ~x =
projV ~x + projV ⊥ ~x for any vector ~x ∈ Rn and subspace
V ⊂ Rn, which in our case can be read to say A + P = I3,
providing a second (and easier) way of computing P .

(3) (a) The ellipse is q(~x) = 1 where q(~x) = ~xT A~x and

A =

[
6 2
2 3

]
.

We have pA(λ) = λ2 − 9λ + 14 = (λ − 7)(λ − 2) so the
eigenvalues of A are λ1 = 7, λ2 = 2. The principal axes are

c1 axis: E7 = Ker(7I − A) = span ~u1, ~u1 =
1√
2

[
2
1

]
c2 axis: E2 = Ker(2I − A) = span ~u2, ~u2 =

1√
2

[
−1
2

]
.

(b) In c1-c2 coordinates: q(~x) = λ1c
2
1 + λ2c

2
2 so the equation of

the ellipse becomes

7c2
1 + 2c2

2 = 1.

(c) The lengths of the semiaxes of the ellipse are 1/
√

λ1 =
1/
√

7 and 1/
√

λ2 = 1/
√

2.
(4) (a) We need to prove that

• q(~x) = 〈~x, ~x〉 > 0 for any ~x 6= ~0.
The determinants of the principal submatrices of A are
det A(1) = det[2] = 2 > 0 and det A(2) = det A = 6 > 0
so q is a positive definite quadratic form and the property
above holds.

(b) Let us agree that ‖~v‖ denotes not the Euclidean (usual)
length of ~v but rather the length computed using the inner
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Figure 1. The ellipse 6x2
1 + 4x1x2 + 3x2

2 = 1 with its
principal axes and the vectors ~u1/

√
7 (black) and ~u2/

√
2

(blue).

product: ‖~v‖ =
√
〈~v,~v〉 =

√
q(~v). E is not an orthonormal

basis of R2 since, for instance, ‖~e1‖ =
√

q(~e1) =
√

2 6= 1.
We apply the Gram-Schmidt process to the standard basis
E and let

~v1 =
1

‖~e1‖
~e1 =

1√
2

[
1
0

]
ṽ2 = ~e2 − 〈~v1, ~e2〉~v1 = ~e2 +

√
2~v1 =

[
1
1

]
‖ṽ2‖ =

√
q(ṽ2) =

√
3

~v2 =
1√
3
ṽ2 =

1√
3

[
1
1

]
,

so an orthonormal basis is U = {~v1, ~v2} =

{
1√
2

[
1
0

]
, 1√

3

[
1
1

]}
.

Another orthonormal basis consists of the semiaxis vectors

λ
−1/2
1 ~u1 = 1√

5

[
2
1

]
and λ

−1/2
2 ~u2 = 1√

30

[
1
−2

]
for the ellipse

q(~x) = 1.
(5) (a) True. The equality of the eigenvalues follows from the

equality of the characteristic polynomials. Since pM(λ) =
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λ2−(Trace M)λ+det M for any 2×2 matrix M , it suffices
to show that AB and BA have the same trace (we know
this) and determinant. However, det(AB) = det(A) det(B) =
det(B) det(A) = det(BA).

(b) True. A will be a reflection in a line L ⊂ R2 if A~x = ~x
for any ~x ∈ L and A~x = −~x for any ~x ⊥ L. Now, for our
A we have pA(λ) = λ2 − 1, so the eigenvalues of A are ±1
(each with multiplicity one). All we need to show now is
that the eigenspaces E±1 are perpendicular lines in R2 for
then A will be the reflection in L = E+1. There is no need
to find the eigenvectors for A explicitly since, A being real
and symmetric, its eigenspaces are necessarily orthogonal.

(c) False. If there were such a basis B then the matrices A =
[T ]E and I5 = [T ]B would satisfy

I5 = S−1AS

where S is the matrix of change of basis E → B. However,
it follows from the equation above that A = SI5S

−1 =
SS−1 = I5, so A was the identity matrix to begin with.
Hence the statement is false unless T is the identity trans-
formation of R5.

(d) True. Take a basis (actually, any spanning set of vec-
tors will do just as well) for V , say {~v1, ~v2, . . . , ~vk}. Then
Im(A) = V where

A =

 | | |
~v1 ~v2 · · · ~vk

| | |

 .

(e) Since A, B are positive definite, for any nonzero ~x ∈ Rn,
~xT A~x > 0 and ~xT B~x > 0. Adding the two equations we
obtain ~xT (A+B)~x = ~xT A~x+~xT B~x > 0 so A+B is positive
definite as well.

(f) False. If AT~b = ~0 and A~x = ~b is consistent then ~b is
both in Ker(AT ) and in Im(A). Since these are mutually
orthogonally complementary subspaces, this would imply
~b = 0. In other words, if AT~b = ~0 then system A~x = ~b is

necessarily inconsistent unless ~b = ~0!
(g) True. Under a suitable change of basis, the matrix B of

the shear will be of the form

B =

[
1 t
0 1

]
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for some number t. This is because, if {~v1, ~v2} is a basis of
R2 with ~v1 in the line L of the shear, then A~v1 = ~v1 (hence
the first column of B) and A~v2 − ~v2 must be some vector
t~v1 ∈ L. A quick calculation shows that

(2) B2 + I2 = 2B.

If S is the matrix of change of basis, then SBS−1 = A.
Multiplying equation (2) by S on the left and S−1 on the
right we obtain the desired result.


