SOLUTION KEY TO THE LINEAR ALGEBRA FINAL EXAM

(1) We find a least squares solution to

$$
A \vec{x}=\vec{y} \quad \text { or } \quad\left[\begin{array}{ccc}
1 & -2 & (-2)^{2} \\
1 & -1 & (-1)^{2} \\
1 & 0 & 0^{2} \\
1 & 1 & 1^{2} \\
1 & 2 & 2^{2}
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{c}
-4 \\
-1 \\
0 \\
0 \\
0
\end{array}\right] .
$$

The normal equation is

$$
A^{T} A \vec{x}_{*}=A^{T} \vec{y}=\vec{y}_{*} \quad \text { or } \quad\left[\begin{array}{ccc}
5 & 0 & 10 \\
0 & 10 & 0 \\
10 & 0 & 34
\end{array}\right]\left[\begin{array}{l}
a_{*} \\
b_{*} \\
c_{*}
\end{array}\right]=\left[\begin{array}{c}
-5 \\
9 \\
-17
\end{array}\right] .
$$

The least-squares solution is

$$
\vec{x}_{*}=\left[\begin{array}{l}
a_{*} \\
b_{*} \\
c_{*}
\end{array}\right]=\frac{1}{10}\left[\begin{array}{c}
0 \\
9 \\
-5
\end{array}\right]
$$

so the sought-after polynomial is $p(t)=\frac{9}{10} t-\frac{1}{2} t^{2}$.
(2) (a)

$$
\operatorname{rref}(A)=\left[\begin{array}{ccc}
1 & 0 & -\frac{1}{2} \tag{1}\\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

So a basis for $V=\operatorname{Im}(A)$ is given by the first two columns of A. A routine application of the Gram-Schmidt process to these two columns yields the orthonormal basis $\left\{\frac{1}{3 \sqrt{2}}\left[\begin{array}{c}4 \\ 1 \\ -1\end{array}\right], \frac{1}{\sqrt{2}}\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\}$. Another basis is $\left\{\frac{1}{3}\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right], \frac{1}{3}\left[\begin{array}{c}2 \\ -1 \\ -1\end{array}\right]\right\}$.
(c) Eduardo Dueñez 2002.
(b) Since A is a projection matrix onto $V, \operatorname{Ker}(A)=V^{\perp}$. From (1), the vector $\left[\begin{array}{c}\frac{1}{2} \\ -1 \\ 1\end{array}\right]$ is a basis for $\operatorname{Ker}(A)$ so an orthonormal basis consists of the vector $\frac{1}{3}\left[\begin{array}{c}-1 \\ 2 \\ -2\end{array}\right]$.
(c)

$$
P=\frac{1}{3}\left[\begin{array}{c}
-1 \\
2 \\
-2
\end{array}\right] \frac{1}{3}\left[\begin{array}{lll}
-1 & 2 & -2
\end{array}\right]=\frac{1}{9}\left[\begin{array}{ccc}
1 & -2 & 2 \\
-2 & 4 & -4 \\
2 & -4 & 4
\end{array}\right]
$$

On the other hand, it is geometrically obvious that $\vec{x}=$ $\operatorname{proj}_{V} \vec{x}+\operatorname{proj}_{V^{\perp}} \vec{x}$ for any vector $\vec{x} \in \mathbb{R}^{n}$ and subspace $V \subset \mathbb{R}^{n}$, which in our case can be read to say $A+P=I_{3}$, providing a second (and easier) way of computing P.
(3) (a) The ellipse is $q(\vec{x})=1$ where $q(\vec{x})=\vec{x}^{T} A \vec{x}$ and

$$
A=\left[\begin{array}{ll}
6 & 2 \\
2 & 3
\end{array}\right]
$$

We have $p_{A}(\lambda)=\lambda^{2}-9 \lambda+14=(\lambda-7)(\lambda-2)$ so the eigenvalues of A are $\lambda_{1}=7, \lambda_{2}=2$. The principal axes are c_{1} axis: $E_{7}=\operatorname{Ker}(7 I-A)=\operatorname{span} \vec{u}_{1}, \quad \vec{u}_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}2 \\ 1\end{array}\right]$
c_{2} axis: $E_{2}=\operatorname{Ker}(2 I-A)=\operatorname{span} \vec{u}_{2}, \quad \vec{u}_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}-1 \\ 2\end{array}\right]$.
(b) In $c_{1}-c_{2}$ coordinates: $q(\vec{x})=\lambda_{1} c_{1}^{2}+\lambda_{2} c_{2}^{2}$ so the equation of the ellipse becomes

$$
7 c_{1}^{2}+2 c_{2}^{2}=1
$$

(c) The lengths of the semiaxes of the ellipse are $1 / \sqrt{\lambda_{1}}=$ $1 / \sqrt{7}$ and $1 / \sqrt{\lambda_{2}}=1 / \sqrt{2}$.
(4) (a) We need to prove that

- $q(\vec{x})=\langle\vec{x}, \vec{x}\rangle>0$ for any $\vec{x} \neq \overrightarrow{0}$.

The determinants of the principal submatrices of A are $\operatorname{det} A^{(1)}=\operatorname{det}[2]=2>0$ and $\operatorname{det} A^{(2)}=\operatorname{det} A=6>0$ so q is a positive definite quadratic form and the property above holds.
(b) Let us agree that $\|\vec{v}\|$ denotes not the Euclidean (usual) length of \vec{v} but rather the length computed using the inner

Figure 1. The ellipse $6 x_{1}^{2}+4 x_{1} x_{2}+3 x_{2}^{2}=1$ with its principal axes and the vectors $\vec{u}_{1} / \sqrt{7}$ (black) and $\vec{u}_{2} / \sqrt{2}$ (blue).
product: $\|\vec{v}\|=\sqrt{\langle\vec{v}, \vec{v}\rangle}=\sqrt{q(\vec{v})}$. E is not an orthonormal basis of \mathbb{R}^{2} since, for instance, $\left\|\vec{e}_{1}\right\|=\sqrt{q\left(\vec{e}_{1}\right)}=\sqrt{2} \neq 1$. We apply the Gram-Schmidt process to the standard basis \mathfrak{E} and let

$$
\begin{gathered}
\vec{v}_{1}=\frac{1}{\left\|\vec{e}_{1}\right\|} \vec{e}_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
\tilde{v}_{2}=\vec{e}_{2}-\left\langle\vec{v}_{1}, \vec{e}_{2}\right\rangle \vec{v}_{1}=\vec{e}_{2}+\sqrt{2} \vec{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
\left\|\tilde{v}_{2}\right\|=\sqrt{q\left(\tilde{v}_{2}\right)}=\sqrt{3} \\
\vec{v}_{2}=\frac{1}{\sqrt{3}} \tilde{v}_{2}=\frac{1}{\sqrt{3}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{gathered}
$$

so an orthonormal basis is $\mathfrak{U}=\left\{\vec{v}_{1}, \vec{v}_{2}\right\}=\left\{\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 0\end{array}\right], \frac{1}{\sqrt{3}}\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$.
Another orthonormal basis consists of the semiaxis vectors $\lambda_{1}^{-1 / 2} \vec{u}_{1}=\frac{1}{\sqrt{5}}\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $\lambda_{2}^{-1 / 2} \vec{u}_{2}=\frac{1}{\sqrt{30}}\left[\begin{array}{c}1 \\ -2\end{array}\right]$ for the ellipse $q(\vec{x})=1$.
(5) (a) True. The equality of the eigenvalues follows from the equality of the characteristic polynomials. Since $p_{M}(\lambda)=$
$\lambda^{2}-($ Trace $M) \lambda+\operatorname{det} M$ for any 2×2 matrix M, it suffices to show that $A B$ and $B A$ have the same trace (we know this) and determinant. However, $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)=$ $\operatorname{det}(B) \operatorname{det}(A)=\operatorname{det}(B A)$.
(b) True. A will be a reflection in a line $L \subset \mathbb{R}^{2}$ if $A \vec{x}=\vec{x}$ for any $\vec{x} \in L$ and $A \vec{x}=-\vec{x}$ for any $\vec{x} \perp L$. Now, for our A we have $p_{A}(\lambda)=\lambda^{2}-1$, so the eigenvalues of A are ± 1 (each with multiplicity one). All we need to show now is that the eigenspaces $E_{ \pm 1}$ are perpendicular lines in \mathbb{R}^{2} for then A will be the reflection in $L=E_{+1}$. There is no need to find the eigenvectors for A explicitly since, A being real and symmetric, its eigenspaces are necessarily orthogonal.
(c) False. If there were such a basis \mathfrak{B} then the matrices $A=$ $[T]_{\mathfrak{E}}$ and $I_{5}=[T]_{\mathfrak{B}}$ would satisfy

$$
I_{5}=S^{-1} A S
$$

where S is the matrix of change of basis $\mathfrak{E} \rightarrow \mathfrak{B}$. However, it follows from the equation above that $A=S I_{5} S^{-1}=$ $S S^{-1}=I_{5}$, so A was the identity matrix to begin with. Hence the statement is false unless T is the identity transformation of \mathbb{R}^{5}.
(d) True. Take a basis (actually, any spanning set of vectors will do just as well) for V, say $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}\right\}$. Then $\operatorname{Im}(A)=V$ where

$$
A=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\vec{v}_{1} & \vec{v}_{2} & \cdots & \vec{v}_{k} \\
\mid & \mid & & \mid
\end{array}\right] .
$$

(e) Since A, B are positive definite, for any nonzero $\vec{x} \in \mathbb{R}^{n}$, $\vec{x}^{T} A \vec{x}>0$ and $\vec{x}^{T} B \vec{x}>0$. Adding the two equations we obtain $\vec{x}^{T}(A+B) \vec{x}=\vec{x}^{T} A \vec{x}+\vec{x}^{T} B \vec{x}>0$ so $A+B$ is positive definite as well.
(f) False. If $A^{T} \vec{b}=\overrightarrow{0}$ and $A \vec{x}=\vec{b}$ is consistent then \vec{b} is both in $\operatorname{Ker}\left(A^{T}\right)$ and in $\operatorname{Im}(A)$. Since these are mutually orthogonally complementary subspaces, this would imply $\vec{b}=0$. In other words, if $A^{T} \vec{b}=\overrightarrow{0}$ then system $A \vec{x}=\vec{b}$ is necessarily inconsistent unless $\vec{b}=\overrightarrow{0}$!
(g) True. Under a suitable change of basis, the matrix B of the shear will be of the form

$$
B=\left[\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right]
$$

for some number t. This is because, if $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ is a basis of \mathbb{R}^{2} with \vec{v}_{1} in the line L of the shear, then $A \vec{v}_{1}=\vec{v}_{1}$ (hence the first column of B) and $A \vec{v}_{2}-\vec{v}_{2}$ must be some vector $t \vec{v}_{1} \in L$. A quick calculation shows that

$$
B^{2}+I_{2}=2 B
$$

If S is the matrix of change of basis, then $S B S^{-1}=A$. Multiplying equation (2) by S on the left and S^{-1} on the right we obtain the desired result.

