THE JOHNS HOPKINS UNIVERSITY
 Faculty of Arts and Sciences
 FINAL EXAM - SPRING SESSION 2005
 110.201 - LINEAR ALGEBRA.

Examiner: Professor C. Consani
Duration: 3 HOURS (9am-12noon), May 12, 2005.

No calculators allowed.
Total Marks $=100$

Student Name:

TA Name \& Session: \qquad

1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	
Total	

1. [10 marks] Consider the matrix $A=\left[\begin{array}{llll}2 & 1 & 0 & 4 \\ 2 & 1 & 1 & 2 \\ 4 & 2 & 3 & 2\end{array}\right]$.

1a. [2 marks] Compute the reduced row-echelon form of A.
1b. [2 marks] Determine the rank of A.
1c. [2 marks] Determine a basis of the column space of A.
1d. [2 marks] Determine a basis of the nullspace of A.
1e. [2 marks] For what value(s) of $r \in \mathbb{R}$ is the following system solvable

$$
A \underline{x}=\left[\begin{array}{l}
2 \\
3 \\
r
\end{array}\right] ?
$$

2. [15 marks] Consider the matrix $A=\left[\begin{array}{ll}1 & 4 \\ 1 & 1 \\ 1 & 1\end{array}\right]$.

2a. [5 marks] Give a factorization $A=Q R$, where R is an upper-triangular matrix and Q is a matrix with orthonormal columns.
2b. [5 marks] Find the least square solution to the system

$$
A \underline{x}=\underline{b}, \quad \text { for } \quad \underline{b}=\left[\begin{array}{l}
4 \\
8 \\
6
\end{array}\right] .
$$

2c. [5 marks] The projection matrix $P=A\left(A^{T} A\right)^{-1} A^{T}$ projects all vectors onto the column space of A. Find a vector \underline{q}, not in the column space of A such that

$$
P \underline{q}=\left[\begin{array}{l}
1 \\
4 \\
4
\end{array}\right] .
$$

3. [15 marks]

3a. [4 marks] Give a 3×3-matrix A with the following properties:
i. $A^{T}=A^{-1}$.
ii. $\operatorname{det}(A)=1$. (A is not allowed to be a diagonal matrix)

3b. [4 marks] Give a 3×3-matrix with the following properties:
i. $A^{T}=A$.
ii. $A^{2}=A$.
iii. $\operatorname{rk}(A)=1$. (A is not allowed to be a diagonal matrix $)$

3c. [4 marks] Suppose A is a 5×3-matrix with orthonormal columns. Evaluate the following determinants:

$$
\begin{aligned}
& \text { i } \operatorname{det}\left(A^{T} A\right) \\
& \text { ii } \operatorname{det}\left(A A^{T}\right) \\
& \text { iii } \operatorname{det}\left(A\left(A^{T} A\right)^{-1} A^{T}\right) \text {. }
\end{aligned}
$$

3d. [3 marks] Which value(s) of $\alpha \in \mathbb{R}$ give $\operatorname{det}(A)=0$, if

$$
A=\left[\begin{array}{ccc}
\alpha & 2 & 3 \\
-\alpha & \alpha & 0 \\
3 & 2 & 5
\end{array}\right] ?
$$

4. [15 marks] Suppose the following information is known about a matrix A :
i. $A\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{c}2 \\ 4 \\ -6\end{array}\right]$
ii. $A\left[\begin{array}{c}0 \\ -1 \\ 0\end{array}\right]=\left[\begin{array}{c}-2 \\ -4 \\ 6\end{array}\right]$
iii. A is symmetric.

The following questions refer to any matrix A with the above properties
4a. [3 marks] Is $\operatorname{Ker}(A)=\{\underline{0}\}$? Explain your answer.
4b. [3 marks] Is A invertible? Why?
4c. [3 marks] Does A have linearly independent eigenvectors? Explain.
4d. [6 marks] Give a specific example of a matrix A satisfying the above three properties and whose eigenvalues add up to zero.
5. [10 marks] Let $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$.

5a. [2 marks] Find the eigenvalues of A.
5b. [3 marks] Give a factorization $A=Q D Q^{T}$ where Q has orthonormal columns and D is a diagonal matrix.
5c. [4 marks] As $t \rightarrow \infty$, what is the limit of $\underline{u}(t)$ for

$$
\frac{d \underline{u}(t)}{d t}=-A \underline{u}(t)
$$

given the initial condition $\underline{u}(0)=\left[\begin{array}{l}3 \\ 1\end{array}\right]$?
5d. [1 marks] Is A a positive definite matrix? Why? Give the quadratic form $q(x, y)$ associated to A.
6. [10 marks]

6a. [3 marks] If possible, find an invertible matrix M such that

$$
M^{-1}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] M=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 2
\end{array}\right] .
$$

If it is not possible, state why M cannot exist.
6b. [3 marks] For what real values of c (if any) is

$$
A=\left[\begin{array}{ccc}
-1 & c & 2 \\
c & -4 & -3 \\
2 & -3 & 4
\end{array}\right]
$$

a symmetric positive definite matrix?
6c. [4 marks] Let $A=\left[\begin{array}{ll}3 & 4 \\ 4 & 3\end{array}\right]$. Is the quadratic form $q(x, y)$ associated to A positive definite? Find its principal axes.
7. [15 marks]

7a. [6 marks] Let $A_{1}=\left[\begin{array}{ccc}0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 2\end{array}\right]$. Is A_{1} diagonalizable? Why? Is A_{1} invertible? Why? Determine the spectral decomposition of A_{1} into projection matrices.
7b. [3 marks] Let $A_{2}=\left[\begin{array}{cc}-3 & 3 \\ 1 & -1\end{array}\right]$. Is A_{2} invertible? Why? Is A_{2} diagonalizable? Why? Determine (if exists) a matrix S and a diagonal matrix D such that $S^{-1} A_{2} S=D$.
7c. [6 marks] Describe the linear transformation $T_{A_{2}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ associated to A_{2}. Does such A_{2} have a decomposition into projection matrices? If yes, give it.
8. [10 marks]

8a. [3 marks] Find the lengths and the inner product $\underline{x} \cdot \underline{y}$ of the following complex vectors

$$
\underline{x}=\left[\begin{array}{c}
2-4 i \\
4 i
\end{array}\right], \quad \underline{y}=\left[\begin{array}{l}
2 \\
4
\end{array}\right] \quad\left(i^{2}=-1\right) .
$$

8b. [3 marks] Let $A=\left[\begin{array}{cc}1 & 1-i \\ 1+i & 2\end{array}\right]$. Let $\underline{x}_{1}, \underline{x}_{2}$ be two (linearly independent) eigenvectors of A. Compute $\underline{x}_{1} \cdot \underline{x}_{2}$ and show that $\operatorname{det}(A) \in \mathbb{R}$.
8c. [4 marks] Prove that for any complex vector \underline{x}

$$
\underline{x}^{H} A \underline{x} \in \mathbb{R} . \quad(H=\text { Hermitian })
$$

