Questions for Midterm IiI Review from Final Spring 05

5a. [2 marks] Find the eigenvalues of $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$.
5b. [3 marks] Give a factorization $A=Q D Q^{T}$ where Q has orthonormal columns and D is a diagonal matrix.

5d. [1 marks] Is A a positive definite matrix? Why? Give the quadratic form $q(x, y)$ associated to A.

6a. [3 marks] If possible, find an invertible matrix M such that

$$
M^{-1}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] M=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 2
\end{array}\right]
$$

If it is not possible, state why M cannot exist.
6b. [3 marks] For what real values of c (if any) is

$$
A=\left[\begin{array}{ccc}
-1 & c & 2 \\
c & -4 & -3 \\
2 & -3 & 4
\end{array}\right]
$$

a symmetric positive definite matrix?
6c. [4 marks] Let $A=\left[\begin{array}{ll}3 & 4 \\ 4 & 3\end{array}\right]$. Is the quadratic form $q(x, y)$ associated to A positive definite? Find its principal axes.
7a. [6 marks] Let $A_{1}=\left[\begin{array}{ccc}0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 2\end{array}\right]$. Is A_{1} diagonalizable? Why? Is A_{1} invertible? Why?
Determine the spectral decomposition of A_{1} into projection matrices.
7b. [3 marks] Let $A_{2}=\left[\begin{array}{cc}-3 & 3 \\ 1 & -1\end{array}\right]$. Is A_{2} invertible? Why? Is A_{2} diagonalizable? Why?
Determine (if exists) a matrix S and a diagonal matrix D such that $S^{-1} A_{2} S=D$.
7c. [6 marks] Describe the linear transformation $T_{A_{2}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ associated to A_{2}. Does such A_{2} have a decomposition into projection matrices? If yes, give it.

8a. [3 marks] Find the lengths and the inner product $\underline{x} \cdot \underline{y}$ of the following complex vectors

$$
\underline{x}=\left[\begin{array}{c}
2-4 i \\
4 i
\end{array}\right], \quad \underline{y}=\left[\begin{array}{l}
2 \\
4
\end{array}\right] \quad\left(i^{2}=-1\right)
$$

8b. [3 marks] Let $A=\left[\begin{array}{cc}1 & 1-i \\ 1+i & 2\end{array}\right]$. Let $\underline{x}_{1}, \underline{x}_{2}$ be two (linearly independent) eigenvectors of A. Compute $\underline{x}_{1} \cdot \underline{x}_{2}$ and show that $\operatorname{det}(A) \in \mathbb{R}$.

8c. [4 marks] Prove that for any complex vector \underline{x}

$$
\underline{x}^{H} A \underline{x} \in \mathbb{R} . \quad(H=\text { Hermitian })
$$

