Solutions to Questions for Midterm III Review from Final Spring 05

5a. [2 marks] Find the eigenvalues of $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$.
5b. [3 marks] Give a factorization $A=Q D Q^{T}$ where Q has orthonormal columns and D is a diagonal matrix.

5d. [1 marks] Is A a positive definite matrix? Why? Give the quadratic form $q(x, y)$ associated to A.

Sol.

5a. Solve $\operatorname{det}(A-\lambda I)=0$. We get the equation $\lambda(\lambda-5)=0$. Hence $\lambda_{1}=5$ and $\lambda_{2}=0$.
$\mathbf{5 b}$. $A=Q D Q^{T}$ is an "eigenvalue-eigenvector" factorization of a symmetric matrix. D is a diagonal matrix containing the eigenvalues of A and Q is a 2×2-matrix whose orthonormal columns are eigenvectors of A. For example

$$
D=\left[\begin{array}{ll}
5 & 0 \\
0 & 0
\end{array}\right], \quad \text { and } \quad \frac{1}{\sqrt{5}}\left[\begin{array}{cc}
1 & 2 \\
2 & -1
\end{array}\right] .
$$

5d. A is not a positive definite matrix as $\lambda_{2}=0$. The quadratic form (singular) associated to A is $q(x, y)=x^{2}+4 x y+4 y^{2}$.

6a. [3 marks] If possible, find an invertible matrix M such that

$$
M^{-1}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] M=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 2
\end{array}\right]
$$

If it is not possible, state why M cannot exist.
6b. [3 marks] For what real values of c (if any) is $A=\left[\begin{array}{ccc}-1 & c & 2 \\ c & -4 & -3 \\ 2 & -3 & 4\end{array}\right]$ a symmetric positive
definite matrix? 6c. [4 marks] Let $A=\left[\begin{array}{ll}3 & 4 \\ 4 & 3\end{array}\right]$. Is the quadratic form $q(x, y)$ associated to A positive definite? Find its principal axes.
 Similar matrices have equal traces and rank. But trace $(A)=3 \neq \operatorname{trace}(B)=5$ and $\operatorname{rk}(A)=$ $1 \neq \operatorname{rk}(B)=2$.

6b. Not possible. For symmetric positive-definite matrices all upper-left determinants are greater than zero. Note that the 1 by 1 upper-left determinant is -1 .

6c. $\operatorname{det}(A)<0$, hence A (or equivalently its associated quadratic form $q(x, y)=3 x^{2}+8 x y+$ $3 y^{2}$) is not positive definite. The eigenvalues of A are: $\lambda_{1}=-1$ and $\lambda_{2}=7$. The principal axes are the eigenspaces of A, namely $E_{1}=\operatorname{span}\left\{\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right\}$ and $E_{2}=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$.

7a. [6 marks] Let $A_{1}=\left[\begin{array}{ccc}0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 2\end{array}\right]$. Is A_{1} diagonalizable? Why? Is A_{1} invertible? Why? Determine the spectral decomposition of A_{1} into projection matrices.
7b. [3 marks] Let $A_{2}=\left[\begin{array}{cc}-3 & 3 \\ 1 & -1\end{array}\right]$. Is A_{2} invertible? Why? Is A_{2} diagonalizable? Why? Determine (if exists) a matrix S and a diagonal matrix D such that $S^{-1} A_{2} S=D$.
7c. [6 marks] Describe the linear transformation $T_{A_{2}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ associated to A_{2}. Does such A_{2} have a decomposition into projection matrices? If yes, give it.

Sol.

7a. A_{1} is symmetric, hence A_{1} is diagonalizable. A_{1} is invertible as $\operatorname{det}\left(A_{1}\right)=\prod \lambda_{i}=$ $2 \cdot 1 \cdot(-1)=-2 \neq 0$. The spectral decomposition of A_{1} is given by

$$
A_{1}=\sum_{i=1}^{3} \lambda_{i} \underline{x}_{i} \underline{x}_{i}^{T}
$$

where \underline{x}_{i} are eigenvectors associated to the eigenvalues λ_{i}. We can choose $\underline{x}_{1}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ as eigenvector associated to $\lambda_{1}=2, \underline{x}_{2}=\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]$ as eigenvector associated to $\lambda_{2}=1$ and $\underline{x}_{3}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ as eigenvector associated to $\lambda_{3}=-1$. It follows that the spectral decomposition of A_{1} is

$$
A_{1}=2 P_{1}+P_{2}-P_{3}=2\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]+\left[\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]-\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

7b. $\operatorname{det}\left(A_{2}\right)=0$ hence A_{2} is not invertible. The eigenvalues of A_{2} are $\mu_{1}=0$ and $\mu_{2}=-4$. They are distinct, hence A_{2} is diagonalizable. The columns of the matrix S are made by 2 eigenvectors of A i.e. $S=\left[\begin{array}{cc}1 & -3 \\ 1 & 1\end{array}\right]$, whereas $D=\left[\begin{array}{cc}0 & 0 \\ 0 & -4\end{array}\right]$ is the eigenvalues matrix.
7c. The linear transformation $T_{A_{2}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is determined by a projection P_{2} onto the line spanned by $\left[\begin{array}{c}-3 \\ 1\end{array}\right]$

$$
A_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\underline{0}, \quad A_{2}\left[\begin{array}{c}
-3 \\
1
\end{array}\right]=-4\left[\begin{array}{c}
-3 \\
1
\end{array}\right] .
$$

It follows that

$$
A_{2}=-4\left[\begin{array}{cc}
3 / 4 & -3 / 4 \\
-1 / 4 & 1 / 4
\end{array}\right]=-4 P_{2}
$$

is the required decomposition, where P_{2} is a projection matrix.

8a. [3 marks] Find the lengths and the inner product $\underline{x} \cdot \underline{y}$ of the following complex vectors

$$
\underline{x}=\left[\begin{array}{c}
2-4 i \\
4 i
\end{array}\right], \quad \underline{y}=\left[\begin{array}{l}
2 \\
4
\end{array}\right] \quad\left(i^{2}=-1\right) .
$$

8b. [3 marks] Let $A=\left[\begin{array}{cc}1 & 1-i \\ 1+i & 2\end{array}\right]$. Let $\underline{x}_{1}, \underline{x}_{2}$ be two (linearly independent) eigenvectors of A. Compute $\underline{x}_{1} \cdot \underline{x}_{2}$ and show that $\operatorname{det}(A) \in \mathbb{R}$.

8c. [4 marks] Prove that for any complex vector \underline{x}

$$
\underline{x}^{H} A \underline{x} \in \mathbb{R} . \quad(H=\text { Hermitian })
$$

Sol.

8a. length $(\underline{x})=\left(\underline{x}^{H} \underline{x}\right)^{1 / 2}=\left(\left[\begin{array}{ll}2+4 i & -4 i\end{array}\right] \cdot\left[\begin{array}{c}2-4 i \\ 4 i\end{array}\right]\right)^{1 / 2}=6 ; \operatorname{length}(\underline{y})=\left(\underline{y}^{T} \underline{y}\right)^{1 / 2}=\sqrt{20}$ and $\underline{x} \cdot \underline{y}:=\underline{x}^{H} \underline{y}=4(1-2 i)$.

8b. Notice that $A=A^{H}$, furthermore let λ_{i} be the 2 eigenvalues of $A: 0=\lambda_{1} \neq \lambda_{2}=3$, then $\underline{x}_{1} \cdot \underline{x}_{2}=0$. Also, one knows that every eigenvalue of a Hermitian matrix is real and so will be its determinant $\left(\operatorname{det}(A)=\lambda_{1} \lambda_{2}=0\right)$.

8c. We have $\left(\underline{x}^{H} A \underline{x}\right)^{H}=\underline{x}^{H} A \underline{x}$, as $A=A^{H}$. It follows that $\underline{x}^{H} A \underline{x} \in \mathbb{R}$.

