THE JOHNS HOPKINS UNIVERSITY Faculty of Arts and Sciences FINAL EXAM - SPRING SESSION 2005 110.201 - LINEAR ALGEBRA.

Examiner: Professor C. Consani Duration: 3 HOURS (9am-12noon), May 12, 2005.

No calculators allowed.

Total Marks = 100

Student Name: _____

TA Name & Session:

1.	
1.	
2.	
3.	
4.	
-	
5.	
6.	
7.	
8.	
0.	
Total	

1. [10 marks] Consider the matrix $A = \begin{bmatrix} 2 & 1 & 0 & 4 \\ 2 & 1 & 1 & 2 \\ 4 & 2 & 3 & 2 \end{bmatrix}$.

- **1a.** [2 marks] Compute the reduced row-echelon form of A.
- **1b.** [2 marks] Determine the rank of A.
- **1c.** [2 marks] Determine a basis of the column space of A.
- 1d. [2 marks] Determine a basis of the nullspace of A.
- **1e.** [2 marks] For what value(s) of $r \in \mathbb{R}$ is the following system solvable

$$A\underline{x} = \begin{bmatrix} 2\\3\\r \end{bmatrix}?$$

$$\begin{array}{c}
\underline{\text{Sol.}} \\
[1a.]\\
A = \begin{bmatrix} 2 & 1 & 0 & 4 \\ 2 & 1 & 1 & 2 \\ 4 & 2 & 3 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 1 & 0 & 4 \\ 0 & 0 & 1 & -2 \\ 4 & 2 & 3 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 1 & 0 & 4 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 3 & -6 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 1 & 0 & 4 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1/2 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \\
\operatorname{rref}(A) = \begin{bmatrix} 1 & 1/2 & 0 & 2 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

[1b.] It follows from the description of $\operatorname{rref}(A)$ that $\operatorname{rk}(A) = 2$.

[1c.] A basis of the column space of A is given by the vectors $\begin{bmatrix} 2\\2\\4 \end{bmatrix}$ and $\begin{bmatrix} 0\\1\\3 \end{bmatrix}$ corresponding to the pivot columns in A.

[1d.] There are two non-trivial relations among the columns of A. Let denote by $\underline{v}_1, \ldots, \underline{v}_4$ the first,...,fourth column of A. We have

$$\underline{v}_1 - 2\underline{v}_2 = \underline{0}, \qquad 2\underline{v}_1 - 2\underline{v}_3 - \underline{v}_4 = \underline{0}.$$

Hence, a basis of the nullspace of A is given by the vectors $\begin{bmatrix} 1\\-2\\0\\0 \end{bmatrix}$ and $\begin{bmatrix} 2\\0\\-2\\-1 \end{bmatrix}$.

[1e.] Consider the complete matrix B associated to the system

$$B = \begin{bmatrix} 2 & 1 & 0 & 4 & | & 2 \\ 2 & 1 & 1 & 2 & | & 3 \\ 4 & 2 & 3 & 2 & | & r \end{bmatrix} \to \begin{bmatrix} 2 & 1 & 0 & 4 & | & 2 \\ 0 & 0 & 1 & -2 & | & 1 \\ 0 & 0 & 3 & -6 & | & r-4 \end{bmatrix} \to \begin{bmatrix} 2 & 1 & 0 & 4 & | & 2 \\ 0 & 0 & 1 & -2 & | & 1 \\ 0 & 0 & 0 & 0 & | & r-7 \end{bmatrix}$$

The system is solvable if and only if $r = 7$.

e system is solvable if and only if r

- **2.** [15 marks] Consider the matrix $A = \begin{bmatrix} 1 & 4 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}$.
 - **2a.** [5 marks] Give a factorization A = QR, where R is an upper-triangular matrix and Q is a matrix with orthonormal columns.
 - **2b.** [5 marks] Find the least square solution to the system

$$A\underline{x} = \underline{b}, \quad \text{for} \quad \underline{b} = \begin{bmatrix} 4\\8\\6 \end{bmatrix}.$$

2c. [5 marks] The projection matrix $P = A(A^T A)^{-1}A^T$ projects all vectors onto the column space of A. Find a vector \underline{q} , not in the column space of A such that

$$P\underline{q} = \begin{bmatrix} 1\\4\\4 \end{bmatrix}.$$

 $\underline{\mathrm{Sol.}}$

[2a.] Perform Gram-Schmidt process on the (linearly independent) columns of A and get two orthonormal vectors fitting the columns of

$$Q = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{6}} \end{bmatrix}.$$

Then, obtain R via $R = Q^T A$, i.e. $R = \begin{bmatrix} \sqrt{3} & 2\sqrt{3} \\ 0 & \sqrt{6} \end{bmatrix}.$
[2b.] The system $(A^T A)\underline{x} = A^T \underline{b}$ is
 $\begin{bmatrix} 3 & 6 \\ 6 & 18 \end{bmatrix} \underline{x} = \begin{bmatrix} 18 \\ 30 \end{bmatrix}$
with (unique) solution $\begin{bmatrix} 8 \\ -1 \end{bmatrix}.$ This is the least square solution to the system $A\underline{x} = \underline{b}.$

[2c.] The vector $\underline{p} = \begin{bmatrix} 1\\ 4\\ 4 \end{bmatrix}$ is in the column space of A. Moreover, the vector $\begin{bmatrix} 0\\ -1\\ 1 \end{bmatrix}$ spans the nullspace of P. Hence there are infinitely many choices for the vector \underline{q} and they are

$$\underline{q} = \underline{p} + t \begin{bmatrix} 0\\-1\\1 \end{bmatrix}, \qquad t \in \mathbb{R}.$$

3. [15 marks]

3a. [4 marks] Give a 3×3 -matrix A with the following properties:

- i. $A^T = A^{-1}$.
- ii. det(A) = 1. (A is not allowed to be a diagonal matrix)
- **3b.** [4 marks] Give a 3×3 -matrix with the following properties:
 - i. $A^T = A$. ii. $A^2 = A$. iii. rk(A) = 1
 - iii. $\operatorname{rk}(A) = 1$. (A is not allowed to be a diagonal matrix)
- **3c.** [4 marks] Suppose A is a 5×3 -matrix with orthonormal columns. Evaluate the following determinants:
 - i $\det(A^T A)$ ii $\det(AA^T)$ iii $\det(A(A^T A)^{-1}A^T).$

3d. [3 marks] Which value(s) of $\alpha \in \mathbb{R}$ give det(A) = 0, if

$$A = \begin{bmatrix} \alpha & 2 & 3 \\ -\alpha & \alpha & 0 \\ 3 & 2 & 5 \end{bmatrix}?$$

 $\underline{\mathrm{Sol.}}$

[3a.] We consider, for example an orthogonal matrix A, with det(A) = 1. Permutation matrices such as $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$ or $\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ have this property. [3b.] We may consider a projection matrix of rank 1: for example (cfr. question 2c.)

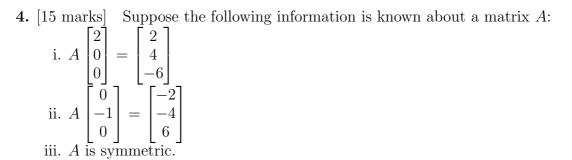
$$A = \underline{v}(\underline{v}^T \underline{v})^{-1} \underline{v}^T, \text{ where } \underline{v} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}. \text{ Namely the matrix } A = \frac{1}{14} \begin{bmatrix} 1 & 2 & 3\\2 & 4 & 6\\3 & 6 & 9 \end{bmatrix}.$$

[3c.]

$$det(A^T A) = det(I) = 1$$
$$det(AA^T) = 0$$
$$det(A(A^T A)^{-1}A^T) = 0$$

 AA^T must have dependent columns and determinant zero because $A(A^T \underline{x}) = \underline{0}$ for any non-zero vector \underline{x} in the nullspace of A^T . The 3×5 -matrix A^T has 3 linearly independent (orthonormal!) rows and a non-trivial nullspace of dimension 5 - 3 = 2. Notice that $\det(A(A^TA)^{-1}A^T) = \det(AA^T) = 0$ as $A^TA = I$.

[3d.] det(A) = $5\alpha(\alpha - 1) = 0$. Therefore, $\alpha = 0$ or $\alpha = 1$.



The following questions refer to any matrix A with the above properties

- **4a.** [3 marks] Is $Ker(A) = \{\underline{0}\}$? Explain your answer.
- **4b.** [3 marks] Is A invertible? Why?
- **4c.** [3 marks] Does A have linearly independent eigenvectors? Explain.
- **4d.** [6 marks] Give a specific example of a matrix A satisfying the above three properties and whose eigenvalues add up to zero.

 $\underline{\mathrm{Sol.}}$

[4a.] A has linearly dependent columns: for example, it follows from conditions i. and ii. that $A\begin{pmatrix} 2\\0\\0 \end{pmatrix} + \begin{bmatrix} 0\\-1\\0 \end{bmatrix}) = \underline{0}$. This implies that $\operatorname{Ker}(A) \neq \{\underline{0}\}$.

[4b.] A is not invertible as $\operatorname{Ker}(A) \neq \{\underline{0}\}.$

[4c.] Yes, the eigenvectors of a symmetric matrix are linearly independent (and can be chosen to be orthonormal).

[4d.] For example
$$A = \begin{bmatrix} 1 & 2 & -3 \\ 2 & 4 & -6 \\ -3 & -6 & a_{33} \end{bmatrix}$$
, with $a_{33} = -5$. In fact: $A \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$ gives 2 times
the first column of A and $A \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}$ gives -1 times the second column of A . Then,
from the symmetry condition iii. we get $a_{13} = a_{31}$ and $a_{23} = a_{32}$. For a_{33} we impose
 $\sum \lambda_k = \operatorname{trace}(A) = 1 + 4 + a_{33} = 0$. From this relation we deduce $a_{33} = -5$.

- **5.** [10 marks] Let $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$.
 - **5a.** [2 marks] Find the eigenvalues of A.
 - **5b.** [3 marks] Give a factorization $A = QDQ^T$ where Q has orthonormal columns and D is a diagonal matrix.
 - **5c.** [4 marks] As $t \to \infty$, what is the limit of $\underline{u}(t)$ for

$$\frac{d\underline{u}(t)}{dt} = -A\underline{u}(t)$$
 given the initial condition $\underline{u}(0) = \begin{bmatrix} 3\\1 \end{bmatrix}$?

5d. [1 marks] Is A a positive definite matrix? Why? Give the quadratic form q(x, y) associated to A.

Sol.

[5a.] Solve det $(A - \lambda I) = 0$. We get the equation $\lambda(\lambda - 5) = 0$. Hence $\lambda_1 = 5$ and $\lambda_2 = 0$.

[5b.] $A = QDQ^T$ is an "eigenvalue-eigenvector" factorization of a symmetric matrix. D is a diagonal matrix containing the eigenvalues of A and Q is a 2×2 -matrix whose orthonormal columns are eigenvectors of A. For example

$$D = \begin{bmatrix} 5 & 0 \\ 0 & 0 \end{bmatrix}, \text{ and } \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}.$$

[5c.] Note that the eigenvalues and eigenvectors of -A need to be used

$$\underline{u}(t) = c_1 e^{-\lambda_1 t} \underline{x}_1 + c_2 e^{\lambda_2 t} \underline{x}_2 = c_1 e^{-5t} \begin{bmatrix} 1\\2 \end{bmatrix} + c_2 \begin{bmatrix} 2\\-1 \end{bmatrix}$$

The initial condition determines the values of c_1 and c_2 : $c_1 = 1$ and $c_2 = 1$. Hence, as $t \to \infty$, $\underline{u}(t) = e^{-5t} \begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 2 \\ -1 \end{bmatrix} \rightarrow \begin{bmatrix} 2 \\ -1 \end{bmatrix}$.

[5d.] A is not a positive definite matrix as $\lambda_2 = 0$. The quadratic form (singular) associated to A is $q(x, y) = x^2 + 4xy + 4y^2$.

- **6.** [10 marks]
 - **6a.** [3 marks] If possible, find an invertible matrix M such that

$$M^{-1} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} M = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 2 \end{bmatrix}$$

If it is not possible, state why M cannot exist.

6b. [3 marks] For what real values of c (if any) is

$$A = \begin{bmatrix} -1 & c & 2\\ c & -4 & -3\\ 2 & -3 & 4 \end{bmatrix}$$

a symmetric positive definite matrix?

6c. [4 marks] Let $A = \begin{bmatrix} 3 & 4 \\ 4 & 3 \end{bmatrix}$. Is the quadratic form q(x, y) associated to A positive definite? Find its principal axes.

$\underline{Sol.}$

[6a.] Not possible. The condition means that $B = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 2 \end{bmatrix}$ is similar to A = $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$. Similar matrices have equal traces and rank. But trace(A) = 3 \neq

 $\operatorname{trace}(B) = 5$ and $\operatorname{rk}(A) = 1 \neq \operatorname{rk}(B) = 2$.

[6b.] Not possible. For symmetric positive-definite matrices all upper-left determinants are greater than zero. Note that the 1 by 1 upper-left determinant is -1.

[6c.] det(A) < 0, hence A (or equivalently its associated quadratic form q(x,y) = $3x^2 + 8xy + 3y^2$) is not positive definite. The eigenvalues of A are: $\lambda_1 = -1$ and $\lambda_2 = 7$. The principal axes are the eigenspaces of A, namely $E_1 = \operatorname{span}\left\{ \begin{bmatrix} -1\\1 \end{bmatrix} \right\}$ and $E_2 = \operatorname{span}\{ \begin{vmatrix} 1 \\ 1 \end{vmatrix} \}.$

7. [15 marks]

- **7a.** [6 marks] Let $A_1 = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$. Is A_1 diagonalizable? Why? Is A_1 invertible? Why? Determine the spectral decomposition of A_1 into projection matrices.
- **7b.** [3 marks] Let $A_2 = \begin{bmatrix} -3 & 3 \\ 1 & -1 \end{bmatrix}$. Is A_2 invertible? Why? Is A_2 diagonalizable? Why? Determine (if exists) a matrix S and a diagonal matrix D such that $S^{-1}A_2S = D$.
- **7c.** [6 marks] Describe the linear transformation $T_{A_2} : \mathbb{R}^2 \to \mathbb{R}^2$ associated to A_2 . Does such A_2 have a decomposition into projection matrices? If yes, give it.

 $\underline{\mathrm{Sol.}}$

[7a.] A_1 is symmetric, hence A_1 is diagonalizable. A_1 is invertible as det $(A_1) = \prod \lambda_i = 2 \cdot 1 \cdot (-1) = -2 \neq 0$. The spectral decomposition of A_1 is given by

$$A_1 = \sum_{i=1}^3 \lambda_i \underline{x}_i \underline{x}_i^T$$

where \underline{x}_i are eigenvectors associated to the eigenvalues λ_i . We can choose $\underline{x}_1 = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$

as eigenvector associated to $\lambda_1 = 2$, $\underline{x}_2 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$ as eigenvector associated to $\lambda_2 = 1$

and $\underline{x}_3 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}$ as eigenvector associated to $\lambda_3 = -1$. It follows that the spectral decomposition of A_1 is

$$A_1 = 2P_1 + P_2 - P_3 = 2\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \begin{bmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} - \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

[7b.] det $(A_2) = 0$ hence A_2 is not invertible. The eigenvalues of A_2 are $\mu_1 = 0$ and $\mu_2 = -4$. They are distinct, hence A_2 is diagonalizable. The columns of the matrix S are made by 2 eigenvectors of A i.e. $S = \begin{bmatrix} 1 & -3 \\ 1 & 1 \end{bmatrix}$, whereas $D = \begin{bmatrix} 0 & 0 \\ 0 & -4 \end{bmatrix}$ is the eigenvalues matrix.

[7c.] The linear transformation $T_{A_2} : \mathbb{R}^2 \to \mathbb{R}^2$ is determined by a projection P_2 onto the line spanned by $\begin{bmatrix} -3\\1 \end{bmatrix}$

$$A_2\begin{bmatrix}1\\1\end{bmatrix} = \underline{0}, \qquad A_2\begin{bmatrix}-3\\1\end{bmatrix} = -4\begin{bmatrix}-3\\1\end{bmatrix}.$$

It follows that

$$A_2 = -4 \begin{bmatrix} 3/4 & -3/4 \\ -1/4 & 1/4 \end{bmatrix} = -4P_2$$

is the required decomposition, where P_2 is a projection matrix.

- 8. [10 marks]
- 8a. [3 marks] Find the lengths and the inner product $\underline{x} \cdot \underline{y}$ of the following complex vectors

$$\underline{x} = \begin{bmatrix} 2-4i\\4i \end{bmatrix}, \quad \underline{y} = \begin{bmatrix} 2\\4 \end{bmatrix} \quad (i^2 = -1).$$

8b. [3 marks] Let $A = \begin{bmatrix} 1 & 1-i \\ 1+i & 2 \end{bmatrix}$. Let $\underline{x}_1, \underline{x}_2$ be two (linearly independent) eigenvectors of A. Compute $\underline{x}_1 \cdot \underline{x}_2$ and show that $\det(A) \in \mathbb{R}$.

8c. [4 marks] Prove that for any complex vector \underline{x}

$$\underline{x}^H A \underline{x} \in \mathbb{R}.$$
 (*H* = Hermitian)

 $\underline{\mathrm{Sol.}}$

[8a.] length(\underline{x}) = ($\underline{x}^H \underline{x}$)^{1/2} = ($\begin{bmatrix} 2+4i & -4i \end{bmatrix} \cdot \begin{bmatrix} 2-4i \\ 4i \end{bmatrix}$)^{1/2} = 6; length(\underline{y}) = ($\underline{y}^T \underline{y}$)^{1/2} = $\sqrt{20}$ and $\underline{x} \cdot \underline{y} := \underline{x}^H \underline{y} = 4(1-2i)$.

[8b.] Notice that $A = A^H$, furthermore let λ_i be the 2 eigenvalues of A: $0 = \lambda_1 \neq \lambda_2 = 3$, then $\underline{x}_1 \cdot \underline{x}_2 = 0$. Also, one knows that every eigenvalue of a Hermitian matrix is real and so will be its determinant (det $(A) = \lambda_1 \lambda_2 = 0$).

[8c.] We have $(\underline{x}^H A \underline{x})^H = \underline{x}^H A \underline{x}$, as $A = A^H$. It follows that $\underline{x}^H A \underline{x} \in \mathbb{R}$.