Questions for Midterm IiI Review from Final Spring 06

11. Find all eigenvalues of the matrix $A=\left[\begin{array}{lll}0 & 1 & 2 \\ 0 & 0 & 4 \\ 0 & 0 & 2\end{array}\right]$.
12. For each of the eigenvalues of A, find the associated eigenspace.
13. Is it possible to diagonalize the matrix A ?
14. True or False: If A and B are both symmetric matrices, them their product $A B$ must also be symmetric. Explain the reasoning behind your answer.
15. True or False: If A and B are both orthogonal matrices, them their product $A B$ must also be orthogonal. Explain the reasoning behind your answer.
16. How many complex eigenvalues does the matrix $M=\left[\begin{array}{lllll}0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 2 & 2 & 2 \\ 1 & 2 & 0 & 3 & 3 \\ 1 & 2 & 3 & 0 & 4 \\ 1 & 2 & 3 & 4 & 0\end{array}\right]$ have?
17. Express the quadratic form $q\left(x_{1}, x_{2}\right)=x_{1}^{2}+6 x_{1} x_{2}+8 x_{2}^{2}$ as an inner product $q(\mathbf{x})=$ $\langle\mathbf{x}, A \mathbf{x}\rangle$, where A is a symmetric matrix.
18. Is there a choice of numbers $\left(x_{1}, x_{2}\right)$ for which $q\left(x_{1}, x_{2}\right)$ is negative? What does the set of points where $q\left(x_{1}, x_{2}\right)=1$ look like? [Please describe the overall shape of the set - it is not necessary to give exact specifications.]
19. What are the singular values of matrix $A=\left[\begin{array}{cc}1 & 1 \\ 2 & 1 \\ 1 & -1\end{array}\right]$?
20. Find a set of perpendicular vectors \mathbf{v}_{1} and \mathbf{v}_{2} in \mathbb{R}^{2} which have the additional property that $A \mathbf{v}_{1}$ and $A \mathbf{v}_{2}$ are also perpendicular to each other?

Remark The vectors can be used to obtain the singular value decomposition $A=U \Sigma V^{T}$, where $V=\left[\begin{array}{cc}1 & 1 \\ \mathbf{v}_{1} & \mathbf{v}_{2} \\ 1 & 1\end{array}\right], \Sigma=\left[\begin{array}{cc}\sigma_{1} & 0 \\ 0 & \sigma_{2} \\ 0 & 0\end{array}\right]$, where σ_{1} and σ_{2} are the singular values, and $U=\left[\begin{array}{ccc}\mid & 1 & \mid \\ \mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3} \\ \mid & \mid & \mid\end{array}\right]$, where $\mathbf{u}_{1}=A \mathbf{v}_{1} / \sigma_{1}, \mathbf{u}_{2}=A \mathbf{v}_{2} / \sigma_{2}$ and \mathbf{u}_{3} is orthogonal to \mathbf{u}_{1} and \mathbf{u}_{2} and normalized.

