Solutions to Questions for Midterm III Review from Final Spring 06
11. Find all eigenvalues of the matrix $A=\left[\begin{array}{lll}0 & 1 & 2 \\ 0 & 0 & 4 \\ 0 & 0 & 2\end{array}\right]$.

Sol. Since A is triangular the eigenvalues are the diagonal entries $\lambda_{1}=\lambda_{2}=0$ and $\lambda_{3}=2$.
12. For each of the eigenvalues of A, find the associated eigenspace.

Sol. For $\lambda_{1}=\lambda_{2}=0$ we get the system $(A-0 I) \mathbf{x}=\mathbf{0}$, which is equivalent to $\mathbf{x}_{3}=0$ and $\mathbf{x}_{2}=0$ and hence the eigenspace is one dimensional $\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}$.
For $\lambda_{3}=2$ we get the system $(A-2 I) \mathbf{x}=\mathbf{0}$, which is equivalent to $-2 \mathbf{x}_{1}+\mathbf{x}_{2}+2 \mathbf{x}_{2}=0$ and $-\mathbf{x}_{2}+2 \mathbf{x}_{3}=0$ and hence the eigenspace is one dimensional $\operatorname{Span}\left\{\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right]\right\}$.
13. Is it possible to diagonalize the matrix A ?

Sol. A is not diagonalizable since it does not have three linearly independent eigenvectors.
19. True or False: If A and B are both symmetric matrices, them their product $A B$ must also be symmetric. Explain the reasoning behind your answer.
Sol. False, take e.g. $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$.
20. True or False: If A and B are both orthogonal matrices, them their product $A B$ must also be orthogonal. Explain the reasoning behind your answer.
Sol. True, since A and B are orthogonal $A^{T} A=I$ and $B^{T} B=I$, and it follows that $(A B)^{T} A B=B^{T} A^{T} A B=B^{T} I B=B^{T} B=I$ so $A B$ is orthogonal.
21. How many complex eigenvalues does the matrix $M=\left[\begin{array}{lllll}0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 2 & 2 & 2 \\ 1 & 2 & 0 & 3 & 3 \\ 1 & 2 & 3 & 0 & 4 \\ 1 & 2 & 3 & 4 & 0\end{array}\right]$ have?
22. Express the quadratic form $q\left(x_{1}, x_{2}\right)=x_{1}^{2}+6 x_{1} x_{2}+8 x_{2}^{2}$ as an inner product $q(\mathbf{x})=$ $\langle\mathbf{x}, A \mathbf{x}\rangle$, where A is a symmetric matrix.
Sol. $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 8\end{array}\right]$.
23. Is there a choice of numbers $\left(x_{1}, x_{2}\right)$ for which $q\left(x_{1}, x_{2}\right)$ is negative? What does the set of points where $q\left(x_{1}, x_{2}\right)=1$ look like? [Please describe the overall shape of the set - it is not necessary to give exact specifications.]
Sol. The characteristic polynomial is $(1-\lambda)(8-\lambda)-9=\lambda^{2}-9 \lambda-1$ which has roots $\lambda_{ \pm}=9 / 2 \pm \sqrt{(9 / 2)^{2}+1}$ so $\lambda_{-}<0$ and $\lambda_{+}>0$. Since A is symmetric it can be diagonalized $A=Q D Q^{T}$ and if we set $\mathbf{y}=Q^{T} \mathbf{x}$ we get

$$
q(\mathbf{x})=\langle\mathbf{x}, A \mathbf{x}\rangle=\left\langle\mathbf{x}, Q D Q^{T} \mathbf{x}\right\rangle=\left\langle Q^{T} \mathbf{x}, D Q^{T} \mathbf{x}\right\rangle=\langle\mathbf{y}, D \mathbf{y}\rangle=\lambda_{-} y_{1}^{2}+\lambda_{+} y_{2}^{2}=\widetilde{q}(\mathbf{y}) .
$$

Hence $\widetilde{q}(1,0)=\lambda_{-}<0$. Now, $\mathbf{y}_{0}=\left(y_{1}, y_{2}\right)=(1,0)$ corresponds to some $\mathbf{x}_{0}=Q \mathbf{y}_{0}$ such that $q\left(\mathbf{x}_{0}\right)=\widetilde{q}\left(\mathbf{y}_{0}\right)=\lambda_{-}<0$. The set $\widetilde{q}(\mathbf{y})=\lambda_{-} y_{1}^{2}+\lambda_{+} y_{2}^{2}=1$ is a hyperbola.
24. What are the singular values of matrix $A=\left[\begin{array}{cc}1 & 1 \\ 2 & 1 \\ 1 & -1\end{array}\right]$?

Sol. The singular values are the square root of the eigenvalues of $A^{T} A=\left[\begin{array}{ll}6 & 2 \\ 2 & 3\end{array}\right]$.
The characteristic polynomial is $(6-\lambda)(3-\lambda)-4=\lambda^{2}-9 \lambda+14=(\lambda-9 / 2)^{2}-25 / 4$, so the eigenvalues are $9 / 2 \pm 5 / 2$ so $\lambda_{1}=7$ and $\lambda_{2}=2$ and the singular values are $\sigma_{1}=\sqrt{7}$ and $\sigma_{2}=\sqrt{2}$.
25. Find a set of perpendicular vectors \mathbf{v}_{1} and \mathbf{v}_{2} in \mathbb{R}^{2} which have the additional property that $A \mathbf{v}_{1}$ and $A \mathbf{v}_{2}$ are also perpendicular to each other?
Sol. Let \mathbf{v}_{1} and \mathbf{v}_{2} be the normalized eigenvectors of $A^{T} A$:
$\left(A^{T} A-7 I\right) \mathbf{v}_{1}=0$ gives $\mathbf{v}_{1}=\frac{1}{\sqrt{5}}\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $\left(A^{T} A-2 I\right) \mathbf{v}_{2}=0$ gives $\mathbf{v}_{2}=\frac{1}{\sqrt{5}}\left[\begin{array}{c}1 \\ -2\end{array}\right]$.
We claim that $A \mathbf{v}_{1}$ and $A \mathbf{v}_{2}$ are perpendicular. In fact,

$$
\left\langle A \mathbf{v}_{i}, A \mathbf{v}_{j}\right\rangle=\left\langle A^{T} A \mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle=\left\langle\lambda_{i} \mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle=\lambda_{i}\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle,
$$

and if $i \neq j$ then $\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle=0$.
Remark If $i=j$ the above equation reads $\left\|A \mathbf{v}_{i}\right\|^{2}=\lambda_{i}\left\|A \mathbf{v}_{i}\right\|^{2}$, so the vectors $\mathbf{u}_{i}=A \mathbf{v}_{i} / \sigma_{i}$, $i=1,2$, are orthonormal. We have $\mathbf{u}_{1}=\frac{1}{\sqrt{35}}\left[\begin{array}{l}3 \\ 5 \\ 1\end{array}\right], \mathbf{u}_{2}=\frac{1}{\sqrt{10}}\left[\begin{array}{c}-1 \\ 0 \\ 3\end{array}\right]$ and $\mathbf{u}_{3}=\mathbf{u}_{1} \times \mathbf{u}_{2}=\frac{1}{\sqrt{14}}\left[\begin{array}{c}3 \\ -2 \\ 1\end{array}\right]$.
The vectors can be used to obtain the singular value decomposition $A=U \Sigma V^{T}$, where $V=\left[\begin{array}{cc}1 & \prime \\ \mathbf{v}_{1} & \mathbf{v}_{2} \\ 1 & \mid\end{array}\right]=\frac{1}{\sqrt{5}}\left[\begin{array}{cc}2 & 1 \\ 1 & -2\end{array}\right], U=\left[\begin{array}{ccc}\mid & \mid & \mid \\ \mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3} \\ \mid & \mid & \mid\end{array}\right]=\left[\begin{array}{ccc}\frac{3}{\sqrt{35}} & \frac{-1}{\sqrt{10}} & \frac{3}{\sqrt{14}} \\ \frac{5}{\sqrt{35}} & 0 & \frac{-2}{\sqrt{14}} \\ \frac{1}{\sqrt{35}} & \frac{3}{\sqrt{10}} & \frac{1}{\sqrt{14}}\end{array}\right]$, and $\Sigma=\left[\begin{array}{cc}\sqrt{7} & 0 \\ 0 & \sqrt{2} \\ 0 & 0\end{array}\right]$.

