Solutions to Math 201 Final Spring 06

1. How many solutions are there to the system of linear equation $\left\{\begin{array}{l}x_{1}-3 x_{2}=0 \\ 3 x_{1}-2 x_{2}=7 \\ 2 x_{1}+x_{2}=7\end{array}\right.$

Sol. The second equation is the sum of the first and third so it is not needed. The remaining 2×2 system $\left[\begin{array}{cc}1 & -3 \\ 2 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 7\end{array}\right]$ has an invertible coefficient matrix so it is uniquely solvable. 2. The vectors $\mathbf{v}_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{l}5 \\ 3\end{array}\right]$ form a basis for \mathbb{R}^{2}. Express the vector $\mathbf{e}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ as a linear combination of \mathbf{v}_{1} and \mathbf{v}_{2}.
Sol. Since $\mathbf{e}_{1}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}$ gives the system $2 c_{1}+5 c_{2}=1$ and $c_{1}+3 c_{2}=0$. The second equation gives $c_{1}=-3 c_{2}$ which if we substitute into the first gives $-c_{2}=1$ so $c_{2}=-1$ and $c_{1}=3$.
3. Suppose a linear transformation T has the property that $T\left(\mathbf{v}_{1}\right)=\mathbf{v}_{1}+\mathbf{v}_{2}$ and $T\left(\mathbf{v}_{2}\right)=$ $2 \mathbf{v}_{1}+3 \mathbf{v}_{2}$. Use your answer to problem 2 to find the value of $T\left(\mathbf{e}_{1}\right)$.
Sol. $T\left(\mathbf{e}_{1}\right)=T\left(3 \mathbf{v}_{1}-\mathbf{v}_{2}\right)=3\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)-\left(2 \mathbf{v}_{1}+3 \mathbf{v}_{2}\right)=\mathbf{v}_{1}$.
4. Are the vectors $\mathbf{v}_{1}=\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}4 \\ -2 \\ 2\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}3 \\ 1 \\ 2\end{array}\right]$, and $\mathbf{v}_{4}=\left[\begin{array}{c}1 \\ -3 \\ 0\end{array}\right]$ all linearly independent? If not, identify which of these vectors are redundant.
Sol. They are linearly dependent since it is four vectors in a three dimensional space. The rest of the problem is most easily solved as in Problem 5.
5. Consider the matrix $A=\left[\begin{array}{cccc}2 & 4 & 3 & 1 \\ -1 & -2 & 1 & -3 \\ 1 & 2 & 2 & 0\end{array}\right]$. Choose a basis for the image of A.

Sol. Row reduction gives

$$
\left[\begin{array}{cccc}
2 & 4 & 3 & 1 \\
-1 & -2 & 1 & -3 \\
1 & 2 & 2 & 0
\end{array}\right] \Leftrightarrow\left[\begin{array}{cccc}
0 & 0 & -1 & 1 \\
0 & 0 & 3 & -3 \\
1 & 2 & 2 & 0
\end{array}\right] \begin{aligned}
& (1)-2(3) \\
& (2)+(3)
\end{aligned} \Leftrightarrow\left[\begin{array}{cccc}
1 & 2 & 2 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right] \underset{(2)+3(1)}{(3)} \begin{gathered}
(1)
\end{gathered} \Leftrightarrow\left[\begin{array}{cccc}
1 & 2 & 0 & 2 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right](1)-2(2)
$$

The first and third column of $B=\operatorname{RREF}(A)$ corresponds to the leading variables and as a consequence the first and third column of A form a basis for the image of A, see section 3.2-3. Rem. This is because any linear relation amongst the columns of B corresponds to the same relation amongst the columns of A since $B \mathbf{x}=\mathbf{0}$ has the same solution set as $A \mathbf{x}=\mathbf{0}$, i.e. if $A=\left[\mathbf{a}_{1} \mathbf{a}_{2} \mathbf{a}_{3} \mathbf{a}_{4}\right], B=\left[\mathbf{b}_{1} \mathbf{b}_{2} \mathbf{b}_{3} \mathbf{b}_{4}\right]$ then $x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+x_{3} \mathbf{a}_{3}+x_{4} \mathbf{a}_{4}=\mathbf{0}$ if and only if $x_{1} \mathbf{b}_{1}+x_{2} \mathbf{b}_{2}+x_{3} \mathbf{b}_{3}+x_{4} \mathbf{b}_{4}=\mathbf{0}$. We have $\mathbf{b}_{4}=2 \mathbf{b}_{1}-\mathbf{b}_{3}$ so $\mathbf{a}_{4}=2 \mathbf{a}_{1}-\mathbf{a}_{3}$ and $\mathbf{b}_{2}=2 \mathbf{b}_{1}$ so $\mathbf{a}_{2}=2 \mathbf{a}_{1}$.
6. Chose a basis for the kernel of A.

Sol. By the solution to problem $5, x_{2}$ and x_{4} are free variables so the and $x_{1}+2 x_{2}+x_{4}=0$ and $x_{3}-x_{4}=0$ so the solution set is $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ \text { basis for the kernel. }\end{array}\right]=x_{2}\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 0\end{array}\right]+x_{4}\left[\begin{array}{c}-1 \\ 0 \\ 1 \\ 1\end{array}\right]$ and these vectors form a
7. Let $T f(x)=\frac{f(x)-f(0)}{x}$, acting on functions f.

If a domain of T is $\mathcal{P}_{n}=\left\{\right.$ polynomials $\left.f(x)=a_{0}+a_{1} x+\cdots=a_{n} x^{n}\right\}$,
then what is the image of T ?
Sol. The image is polynomial of degree one less $T f=a_{1}+2 a_{2} x+\cdots+n a_{n} x^{n-1}$.
8. Show that the kernel of T is the space \mathcal{P}_{0} of constant functions.

Sol. $T f=0$ is equivalent to $f=a_{0}$.
9. What is the determinant of the matrix $M=\left[\begin{array}{cccc}1 & 2 & 1 & 0 \\ -1 & 3 & 3 & 1 \\ 0 & 0 & 3 & 5 \\ 1 & 2 & 1 & 2\end{array}\right]$?

Sol. Subtracting a multiple of the first row from the second and third rows gives
$\left|\begin{array}{cccc}1 & 2 & 1 & 0 \\ -1 & 3 & 3 & 1 \\ 0 & 0 & 3 & 5 \\ 1 & 2 & 1 & 2\end{array}\right|=\left|\begin{array}{cccc}1 & 2 & 1 & 0 \\ 0 & 5 & 4 & 1 \\ 0 & 0 & 3 & 5 \\ 0 & 0 & 0 & 2\end{array}\right|=1 \cdot 5 \cdot 3 \cdot 2=30$,
since the determinant of a triangular matrix is the product of the diagonal elements.
Rem. Note that we only used the row operators that subtract off a multiple of another row from the row we change and these don't change the determinant.
Note also that alternatively as a second step one could have expanded along the first column.
10. Give an example of 2×2 matrices A and B where $\operatorname{det}(A)+\operatorname{det}(B)$ is not equal to $\operatorname{det}(A+B)$.
Sol. If $A=I$ and $B=-I$.
11. Find all eigenvalues of the matrix $A=\left[\begin{array}{lll}0 & 1 & 2 \\ 0 & 0 & 4 \\ 0 & 0 & 2\end{array}\right]$.

Sol. Since A is triangular the eigenvalues are the diagonal entries $\lambda_{1}=\lambda_{2}=0$ and $\lambda_{3}=2$.
12. For each of the eigenvalues of A, find the associated eigenspace.

Sol. For $\lambda_{1}=\lambda_{2}=0$ we get the system $(A-0 I) \mathbf{x}=\mathbf{0}$, which is equivalent to $\mathbf{x}_{3}=0$ and $\mathbf{x}_{2}=0$ and hence the eigenspace is one dimensional $\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}$.
For $\lambda_{3}=2$ we get the system $(A-2 I) \mathbf{x}=\mathbf{0}$, which is equivalent to $-2 \mathbf{x}_{1}+\mathbf{x}_{2}+2 \mathbf{x}_{2}=0$ and $-\mathbf{x}_{2}+2 \mathbf{x}_{3}=0$ and hence the eigenspace is one dimensional $\operatorname{Span}\left\{\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right]\right\}$.
13. Is it possible to diagonalize the matrix A ?

Sol. A is not diagonalizable since it does not have three linearly independent eigenvectors.
14. What is the length of the vector $\mathbf{v}=\left[\begin{array}{c}1 \\ 1 \\ -1 \\ 1\end{array}\right]$?

Sol. $\|\mathbf{v}\|=\sqrt{4}$.
15. What is the angle between the vectors $\mathbf{v}=\left[\begin{array}{c}1 \\ 1 \\ -1 \\ 1\end{array}\right]$ and $\mathbf{e}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right]$?

Sol. $\|\mathbf{v}\|\left\|\mathbf{e}_{1}\right\| \cos \theta=\mathbf{v} \cdot e_{2}=1$ so $\cos \theta=1 / \sqrt{4}$.
16. What is the projection of \mathbf{e}_{2} onto the line spanned by \mathbf{v} ?

Sol. Let $\mathbf{u}=\mathbf{v} /\|\mathbf{v}\|$. Then the projection is $\left(\mathbf{e}_{\mathbf{2}} \cdot \mathbf{u}\right) \mathbf{u}=\frac{\mathbf{e}_{\mathbf{2}} \cdot \mathbf{v}}{\|\mathbf{v}\|^{2}} \mathbf{v}=\frac{1}{4}\left[\begin{array}{c}1 \\ 1 \\ -1 \\ 1\end{array}\right]$.
17. The system of equations $\left\{\begin{array}{l}x_{1}=5 \\ x_{1}=1 \\ x_{1}=6\end{array}\right.$ (equivalently, $\left.\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right] x_{1}=\left[\begin{array}{l}5 \\ 1 \\ 6\end{array}\right]\right)$ is hopelessly inconsistent.

What values of x_{1} provides the least-squares approximate solution?
18. Decide whether the function $\langle f, g\rangle=\int_{-1}^{1} f(x) g(-x) d x$ is a valid inner product, where f and g are allowed to be any pair of continuous functions on the interval $[-1,1]$.
Sol It is not since we can take $f(t)=0$ when $t<0$ but $f(t)=t$ for $t>0$ in which case $\langle f, f\rangle=0$ but $f \neq 0$.
19. True or False: If A and B are both symmetric matrices, them their product $A B$ must also be symmetric. Explain the reasoning behind your answer.
Sol. False, take e.g. $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$.
20. True or False: If A and B are both orthogonal matrices, them their product $A B$ must also be orthogonal. Explain the reasoning behind your answer.
Sol. True, since A and B are orthogonal $A^{T} A=I$ and $B^{T} B=I$, and it follows that $(A B)^{T} A B=B^{T} A^{T} A B=B^{T} I B=B^{T} B=I$ so $A B$ is orthogonal.
21. How many complex eigenvalues does the matrix $M=\left[\begin{array}{lllll}0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 2 & 2 & 2 \\ 1 & 2 & 0 & 3 & 3 \\ 1 & 2 & 3 & 0 & 4 \\ 1 & 2 & 3 & 4 & 0\end{array}\right]$ have?
22. Express the quadratic form $q\left(x_{1}, x_{2}\right)=x_{1}^{2}+6 x_{1} x_{2}+8 x_{2}^{2}$ as an inner product $q(\mathbf{x})=$ $\langle\mathbf{x}, A \mathbf{x}\rangle$, where A is a symmetric matrix.
Sol. $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 8\end{array}\right]$.
23. Is there a choice of numbers $\left(x_{1}, x_{2}\right)$ for which $q\left(x_{1}, x_{2}\right)$ is negative? What does the set of points where $q\left(x_{1}, x_{2}\right)=1$ look like? [Please describe the overall shape of the set - it is not necessary to give exact specifications.]

Sol. The characteristic polynomial is $(1-\lambda)(8-\lambda)-9=\lambda^{2}-9 \lambda-1$ which has roots $\lambda_{ \pm}=9 / 2 \pm \sqrt{(9 / 2)^{2}+1}$ so $\lambda_{-}<0$ and $\lambda_{+}>0$. Since A is symmetric it can be diagonalized $A=Q D Q^{T}$ and if we set $\mathbf{y}=Q^{T} \mathbf{x}$ we get

$$
q(\mathbf{x})=\langle\mathbf{x}, A \mathbf{x}\rangle=\left\langle\mathbf{x}, Q D Q^{T} \mathbf{x}\right\rangle=\left\langle Q^{T} \mathbf{x}, D Q^{T} \mathbf{x}\right\rangle=\langle\mathbf{y}, D \mathbf{y}\rangle=\lambda_{-} y_{1}^{2}+\lambda_{+} y_{2}^{2}=\widetilde{q}(\mathbf{y})
$$

Hence $\widetilde{q}(1,0)=\lambda_{-}<0$. Now, $\mathbf{y}_{0}=\left(y_{1}, y_{2}\right)=(1,0)$ corresponds to some $\mathbf{x}_{0}=Q \mathbf{y}_{0}$ such that $q\left(\mathbf{x}_{0}\right)=\widetilde{q}\left(\mathbf{y}_{0}\right)=\lambda_{-}<0$. The set $\widetilde{q}(\mathbf{y})=\lambda_{-} y_{1}^{2}+\lambda_{+} y_{2}^{2}=1$ is a hyperbola.
24. What are the singular values of matrix $A=\left[\begin{array}{cc}1 & 1 \\ 2 & 1 \\ 1 & -1\end{array}\right]$?

Sol. The singular values are the square root of the eigenvalues of $A^{T} A=\left[\begin{array}{ll}6 & 2 \\ 2 & 3\end{array}\right]$.
The characteristic polynomial is $(6-\lambda)(3-\lambda)-4=\lambda^{2}-9 \lambda+14=(\lambda-9 / 2)^{2}-25 / 4$, so the eigenvalues are $9 / 2 \pm 5 / 2$ so $\lambda_{1}=7$ and $\lambda_{2}=2$ and the singular values are $\sigma_{1}=\sqrt{7}$ and $\sigma_{2}=\sqrt{2}$.
25. Find a set of perpendicular vectors \mathbf{v}_{1} and \mathbf{v}_{2} in \mathbb{R}^{2} which have the additional property that $A \mathbf{v}_{1}$ and $A \mathbf{v}_{2}$ are also perpendicular to each other?
Sol. Let \mathbf{v}_{1} and \mathbf{v}_{2} be the normalized eigenvectors of $A^{T} A$:
$\left(A^{T} A-7 I\right) \mathbf{v}_{1}=0$ gives $\mathbf{v}_{1}=\frac{1}{\sqrt{5}}\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $\left(A^{T} A-2 I\right) \mathbf{v}_{2}=0$ gives $\mathbf{v}_{2}=\frac{1}{\sqrt{5}}\left[\begin{array}{c}1 \\ -2\end{array}\right]$.
We claim that $A \mathbf{v}_{1}$ and $A \mathbf{v}_{2}$ are perpendicular. In fact,

$$
\left\langle A \mathbf{v}_{i}, A \mathbf{v}_{j}\right\rangle=\left\langle A^{T} A \mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle=\left\langle\lambda_{i} \mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle=\lambda_{i}\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle
$$

and if $i \neq j$ then $\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle=0$.
Remark If $i=j$ the above equation reads $\left\|A \mathbf{v}_{i}\right\|^{2}=\lambda_{i}\left\|A \mathbf{v}_{i}\right\|^{2}$, so the vectors $\mathbf{u}_{i}=A \mathbf{v}_{i} / \sigma_{i}$, $i=1,2$, are orthonormal. We have $\mathbf{u}_{1}=\frac{1}{\sqrt{35}}\left[\begin{array}{l}3 \\ 5 \\ 1\end{array}\right], \mathbf{u}_{2}=\frac{1}{\sqrt{10}}\left[\begin{array}{c}-1 \\ 0 \\ 3\end{array}\right]$ and $\mathbf{u}_{3}=\mathbf{u}_{1} \times \mathbf{u}_{2}=\frac{1}{\sqrt{14}}\left[\begin{array}{c}3 \\ -2 \\ 1\end{array}\right]$.
The vectors can be used to obtain the singular value decomposition $A=U \Sigma V^{T}$, where

$$
V=\left[\begin{array}{cc}
1 & \prime \\
\mathbf{v}_{1} & \mathbf{v}_{2} \\
1 & \mid
\end{array}\right]=\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
2 & 1 \\
1 & -2
\end{array}\right], U=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3} \\
\mid & \mid & \mid
\end{array}\right]=\left[\begin{array}{ccc}
\frac{3}{\sqrt{35}} & \frac{-1}{\sqrt{10}} & \frac{3}{\sqrt{14}} \\
\frac{5}{\sqrt{35}} & 0 & \frac{-2}{\sqrt{14}} \\
\frac{1}{\sqrt{35}} & \frac{3}{\sqrt{10}} & \frac{1}{\sqrt{14}}
\end{array}\right] \text {, and } \Sigma=\left[\begin{array}{cc}
\sqrt{7} & 0 \\
0 & \sqrt{2} \\
0 & 0
\end{array}\right] \text {. }
$$

