> Name $\ldots \ldots \ldots \ldots \ldots \ldots$
> Section/ Name of your TA $\ldots \ldots \ldots \ldots \ldots \ldots$

Final Exam 200pts. Math 201 Ver ${ }^{* * * *}$

- There are 12 pages in the exam excluding this page.
- Write all your answers clearly. You have to show work to get points for your answers.
- Read all the questions carefully and make sure you answer all the parts.
- Questions 1-8 have parts in them which are inter-related.
- You can write on both sides of the paper. Indicate that the answer follows on the back of the page.
- Use of Calculators is not allowed during the exam.
(1) $\ldots / 20$
(2) $\ldots \ldots \cdot / 20$
(3) $\ldots \ldots \cdot / 20$
(4) $\ldots \ldots . / 15$
(5) $\ldots \ldots . / 15$
(6) $\ldots \ldots . / 15$
(7) $\ldots \ldots . . / 20$
(8) $\ldots \ldots . / 15$
(9) $\ldots \ldots . . / 32$
(10) $\ldots \ldots . . / 28$

Total /200

1 20pts. Let $A=\left[\begin{array}{rrr}1 & 2 & -1 \\ 1 & 0 & 1 \\ 1 & 0 & 1\end{array}\right]$.
(a) Find the eigenvalues of A.
(b) Is A diagonalizable? explain why or why not?

2 20pts. Let A be a 2×2 matrix with eigenvalues $\frac{1}{2}$ and $\frac{-1}{2}$. Let

$$
\operatorname{Ker}\left(A-\frac{1}{2} I\right)=\operatorname{Span}\left\{\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right\}
$$

and

$$
\operatorname{Ker}\left(A+\frac{1}{2} I\right)=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\}
$$

(a) Let

$$
\vec{x}(t+1)=\left[\begin{array}{l}
x_{1}(t+1) \\
x_{2}(t+1)
\end{array}\right]=A \vec{x}(t)
$$

Given that $\vec{x}(0)=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, find $\vec{x}(3)$.
(b) Draw the phase potrait for the discrete system in part (a).

3 20pts. Let $A=\left[\begin{array}{ll}3 & 2 \\ 2 & 3\end{array}\right] .2 \quad S$
(a) Given that $\lambda=\&$ and \angle are the only eigenvalues of A. Find an orthonormal basis of \mathbb{R}^{3} denoted by \mathcal{B} consisting of eigenvectors of A.
(b) Given the following quadratic form $q\left(x_{1}, x_{2}\right)=3 x_{1}^{2}+4 x_{1} x_{2}+3 x_{2}^{2}$. Describe q in terms of \mathcal{B} coordinates. Show work.

4 15pts. Let f denote a infinitely differentiable function on \mathbb{R}. Find all real solutions to the following differential equation.

$$
\frac{d^{2} f}{d t^{2}}-f(t)=0
$$

5 15pts.

$$
A=\left[\begin{array}{rrr}
1 & 0 & 1 \\
2 & 1 & -2 \\
3 & 1 & 0
\end{array}\right]
$$

(a) Find the inverse of A, if it exists.
(b) Give a basis of the Image of the transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined as $T(\vec{x})=A \vec{x}$.

6 15pts
$\left[\begin{array}{ll|r}1 & 1 & -2 \\ 1 & 2 & 1 \\ 1 & 1 & h\end{array}\right]$
(a) Given that the above is the augmented matrix of a system of equations, find h such that it is consistent.
(b) For $h=0$ find the least squares solution to the system.

7 20pts. Let $\left\{\left[\begin{array}{r}1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$ and $\left\{\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{r}0 \\ -1 \\ -2\end{array}\right]\right\}$ be two different bases of a subspace W in \mathbb{R}^{3}.
(a) Which of the two sets are orthogonal? Show work.
(b) Let $\vec{y}=\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$. Is $\vec{y} \in W$?
(c) Find $\operatorname{proj}_{W} \vec{y}$, that is, the orthogonal projection of \vec{y} onto W.

815 pts. Let A be a 2×2 matrix with eigenvalues 1 and 3 , such that $\operatorname{Ker}(A-I)=$ $\operatorname{Span}\left\{\left[\begin{array}{r}-1 \\ 1\end{array}\right]\right\}$ and $\operatorname{Ker}(A-3 I)=\operatorname{Span}\left\{\left[\begin{array}{r}1 \\ -3\end{array}\right]\right\}$.
(a) Find A. Show work.
(b) Let T denote the transformation $T \vec{x}=A \vec{x}$. Write down the matrix of the transformation T with respect to the basis $\left\{\left[\begin{array}{r}-1 \\ 1\end{array}\right],\left[\begin{array}{r}1 \\ -3\end{array}\right]\right\}$. Show work.

9 32pts. Answer the following in short. Give justification for your answers.
(i) Let \mathcal{D} denote the space of differentiable functions from $\mathbb{R} \rightarrow \mathbb{R}$. Is the function $<,>: \mathcal{D} \times \mathcal{D} \rightarrow \mathbb{R}$ defined as

$$
<f, g>=f(0) g^{\prime}(0)+f^{\prime}(0) g(0)
$$ an inner product on \mathcal{D} ?

(ii) Let $V=\operatorname{Span}\left\{\left[\begin{array}{r}-1 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{l}0 \\ 3 \\ 1\end{array}\right],\left[\begin{array}{r}0 \\ -1 \\ -2\end{array}\right]\right\}$. Find the dimension of V. Explain your answer.

9 (iii) Let A be a 2×2 matrix with eigenvalues $-1 \pm 2 i$. Then consider the system of differential equations,

$$
\left[\begin{array}{l}
\frac{d x_{1}}{d t} \\
\frac{d x_{2}}{d t}
\end{array}\right]=A\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

What happens to $x(t)$ as $t \rightarrow \infty$? Show work.

9 (iv) Let A be an 2×2 matrix such that $A^{3}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. Then find Ker A.

10 28pts. State true or false with justification. 10(i) If A is a orthogonal 3×3 matrix then $\operatorname{det} A>0$.

10(ii) Let $W=\operatorname{Span}\left\{\vec{w}_{1}, \vec{w}_{2}, \vec{w}_{3}\right\}$ and $\vec{w}_{2} \in \operatorname{Span}\left\{\vec{w}_{1}, \vec{w}_{3}\right\}$. Then $W=$ $\operatorname{Span}\left\{\vec{w}_{1}, \overrightarrow{w_{3}}\right\}$.

10(iii) Let $T: V \rightarrow W$ be an invertible linear transformation from a vector space V to another vector space W. If $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a linearly independent subset of V, then $\left\{T v_{1}, T v_{2}, T v_{3}\right\}$ is a linearly independent set in W.

10(iv) If A is a 2×2 symmetric matrix then all its eigenvalues are positive real numbers.

