Questions for Midterm III Review from Final Spring 09

1. Let $A=\left[\begin{array}{ccc}1 & 2 & -1 \\ 1 & 0 & 1 \\ 1 & 0 & 1\end{array}\right]$.
(a) Find the eigenvalues of A.
(b) Is A diagonalizable? explain why or why not?
2. Let A be a 2×2 matrix with eigenvalues $1 / 2$ and $-1 / 2$.

Let $\operatorname{Ker}\left(A-\frac{1}{2} I\right)=\operatorname{Span}\left\{\left[\begin{array}{l}2 \\ 1\end{array}\right]\right\}$ and $\operatorname{Ker}\left(A+\frac{1}{2} I\right)=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$.
(a) Let $\mathbf{x}(t+1)=\left[\begin{array}{l}x_{1}(t+1) \\ x_{2}(t+1)\end{array}\right]=A \mathbf{x}(t)$. Given that $\mathbf{x}(0)=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, find $\mathbf{x}(3)$.
(b) Draw the phase portrait for the discrete system in part (a).
3. Let $A=\left[\begin{array}{ll}3 & 2 \\ 2 & 3\end{array}\right]$.
(a) Given that $\lambda=1$ and 5 are the only eigenvalues of A. Find an orthonormal basis of \mathbb{R}^{3} denoted by \mathcal{B} consisting of eigenvectors of A.
(b) Given the following quadratic form $q\left(x_{1}, x_{2}\right)=3 x_{1}^{2}+4 x_{1} x_{2}+3 x_{2}^{2}$.

Describe q in terms of \mathcal{B} coordinates. Show work.
8. Let A be a 2×2 matrix with eigenvalues 1 and 3 , such that $\operatorname{Ker}(A-I)=\operatorname{Span}\left\{\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right\}$ and $\operatorname{Ker}(A-3 I)=\operatorname{Span}\left\{\left[\begin{array}{c}1 \\ -3\end{array}\right]\right\}$.
(a) Find A. Show work.
(b) Let T denote the transformation $T \mathbf{x}=A \mathbf{x}$. Write down the matrix of the transformation T with respect to the basis $\left\{\left[\begin{array}{c}-1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -3\end{array}\right]\right\}$. Show work.
10. State true or false with justification.

10(i) If A is a orthogonal 3×3 matrix then $\operatorname{det} A>0$.
10 (iv) If A is a 2×2 symmetric matrix then all its eigenvalues are positive real numbers.

