Solutions to Questions for Midterm III Review from Final Spring 09

1. Let $A=\left[\begin{array}{ccc}1 & 2 & -1 \\ 1 & 0 & 1 \\ 1 & 0 & 1\end{array}\right]$.
(a) Find the eigenvalues of A.
(b) Is A diagonalizable? explain why or why not?

Sol. (a) Subtracting the third row from the second and expanding along the second gives:

$$
\left|\begin{array}{ccc}
1-\lambda & 2 & -1 \\
1 & -\lambda & 1 \\
1 & 0 & 1-\lambda
\end{array}\right|=\left|\begin{array}{ccc}
1-\lambda & 2 & -1 \\
0 & -\lambda & \lambda \\
1 & 0 & 1-\lambda
\end{array}\right|=(-1)^{2+2}(-\lambda)\left|\begin{array}{cc}
1-\lambda & -1 \\
1 & 1-\lambda
\end{array}\right|+(-1)^{2+3} \lambda\left|\begin{array}{cc}
1-\lambda & 2 \\
1 & 0
\end{array}\right|
$$

$$
=-\lambda\left((1-\lambda)^{2}+1-2\right)=-\lambda^{2}(\lambda-2),
$$

so the eigenvalues are $\lambda_{1}=\lambda_{2}=0$ and $\lambda_{3}=2$.
(b) For A to be diagonalizable the dimension of the Eigenspace corresponding to the double eigenvalue 0 has to be 2 . We hence wish to solve $A \mathbf{x}=\mathbf{0}$. Row reduction gives the system $x_{1}+x_{3}=0$ and $x_{2}-x_{3}=0$, which can't be reduced further. Since the only free variable is x_{3} the eigenspace is one dimensional. Therefore the matrix can not be diagonalized.
2. Let A be a 2×2 matrix with eigenvalues $1 / 2$ and $-1 / 2$.

Let $\operatorname{Ker}\left(A-\frac{1}{2} I\right)=\operatorname{Span}\left\{\left[\begin{array}{l}2 \\ 1\end{array}\right]\right\}$ and $\operatorname{Ker}\left(A+\frac{1}{2} I\right)=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$.
(a) Let $\mathbf{x}(t+1)=\left[\begin{array}{l}x_{1}(t+1) \\ x_{2}(t+1)\end{array}\right]=A \mathbf{x}(t)$. Given that $\mathbf{x}(0)=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, find $\mathbf{x}(3)$.
(b) Draw the phase portrait for the discrete system in part (a).

Sol. (a) We have $\mathbf{x}(k)=A^{k} \mathbf{x}(0)$. We want to write $\mathbf{x}(0)=c_{1} \mathbf{b}_{1}+c_{2} \mathbf{b}_{2}$ where \mathbf{b}_{1} and \mathbf{b}_{2} are the eigenvectors corresponding to the eigenvalues $\lambda_{1}=1 / 2$ and $\lambda_{2}=-1 / 2$ respectively. Then $\mathbf{x}(k)=A^{k} \mathbf{x}(0)=c_{1} A^{k} \mathbf{b}_{1}+c_{2} A^{k} \mathbf{b}_{2}=c_{1} \lambda_{1}^{k} \mathbf{b}_{1}+c_{2} \lambda_{2}^{k} \mathbf{b}_{2}$.
Solving the system $\mathbf{x}(0)=c_{1} \mathbf{b}_{1}+c_{2} \mathbf{b}_{2}$ for c_{1} and c_{2} gives $c_{1}=0$ and $c_{2}=1$ so $\mathbf{x}(3)=(-1 / 2)^{3}\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
3. Let $A=\left[\begin{array}{ll}3 & 2 \\ 2 & 3\end{array}\right]$.
(a) Given that $\lambda=1$ and 5 are the only eigenvalues of A. Find an orthonormal basis of \mathbb{R}^{3} denoted by \mathcal{B} consisting of eigenvectors of A.
(b) Given the following quadratic form $q\left(x_{1}, x_{2}\right)=3 x_{1}^{2}+4 x_{1} x_{2}+3 x_{2}^{2}$.

Describe q in terms of \mathcal{B} coordinates. Show work.
Sol.(a) $\operatorname{Ker}(A-I)=\operatorname{Span}\left\{\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right\}$ and $\operatorname{Ker}(A-5 I)=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$, so $\mathbf{b}_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ and $\mathbf{b}_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1\end{array}\right]$ are orthonormal.
(b) We have $A=Q D Q^{T}$, where $D=\left[\begin{array}{ll}1 & 0 \\ 0 & 5\end{array}\right]$ and $Q=\left[\begin{array}{cc}\mathbf{b}_{1} & \prime \\ 1 & \mathbf{b}_{2} \\ 1 & 1\end{array}\right]$. Set $\mathbf{y}=Q^{T} \mathbf{x}$.

Then $q(\mathbf{x})=\langle\mathbf{x}, A \mathbf{x}\rangle=\left\langle\mathbf{x}, Q D Q^{T} \mathbf{x}\right\rangle=\left\langle Q^{T} \mathbf{x}, D Q^{T} \mathbf{x}\right\rangle=\langle\mathbf{y}, D \mathbf{y}\rangle=y_{1}^{2}+5 y_{2}^{2}=\widetilde{q}(\mathbf{y})$.
8. Let A be a 2×2 matrix with eigenvalues 1 and 3 ,
such that $\operatorname{Ker}(A-I)=\operatorname{Span}\left\{\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right\}$ and $\operatorname{Ker}(A-3 I)=\operatorname{Span}\left\{\left[\begin{array}{c}1 \\ -3\end{array}\right]\right\}$.
(a) Find A. Show work.
(b) Let T denote the transformation $T \mathbf{x}=A \mathbf{x}$. Write down the matrix of the transformation T with respect to the basis $\left.\left\{\begin{array}{c}-1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -3\end{array}\right]\right\}$. Show work.
Sol. (a) Since the eigenvalues are different A can be diagonalized $A=S D S^{-1}$, where $D=\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right]$ and $S=\left[\begin{array}{cc}-1 & 1 \\ 1 & -3\end{array}\right]$ and hence $S^{-1}=\frac{1}{2}\left[\begin{array}{ll}-3 & -1 \\ -1 & -1\end{array}\right]$. Hence $A=\ldots$.
(b) The matrix is the matrix D in (a).
10. State true or false with justification.

10(i) If A is a orthogonal 3×3 matrix then $\operatorname{det} A>0$.
10 (iv) If A is a 2×2 symmetric matrix then all its eigenvalues are positive real numbers.
Sol. (i) False, since Q could be a reflection, even just $-I$.
(iv) False, since again we could take $A=-I$.

