1. Let $A=\left[\begin{array}{ccc}1 & 2 & -1 \\ 1 & 0 & 1 \\ 1 & 0 & 1\end{array}\right]$.
(a) Find the eigenvalues of A.
(b) Is A diagonalizable? explain why or why not?

Sol. (a) Subtracting the third row from the second and expanding along the second gives:

$$
\left|\begin{array}{ccc}
1-\lambda & 2 & -1 \\
1 & -\lambda & 1 \\
1 & 0 & 1-\lambda
\end{array}\right|=\left|\begin{array}{ccc}
1-\lambda & 2 & -1 \\
0 & -\lambda & \lambda \\
1 & 0 & 1-\lambda
\end{array}\right|=(-1)^{2+2}(-\lambda)\left|\begin{array}{cc}
1-\lambda & -1 \\
1 & 1-\lambda
\end{array}\right|+(-1)^{2+3} \lambda\left|\begin{array}{cc}
1-\lambda & 2 \\
1 & 0
\end{array}\right|
$$

so the eigenvalues are $\lambda_{1}=\lambda_{2}=0$ and $\lambda_{3}=2 . \quad=-\lambda\left((1-\lambda)^{2}+1-2\right)=-\lambda^{2}(\lambda-2)$,
(b) For A to be diagonalizable the dimension of the Eigenspace corresponding to the double eigenvalue 0 has to be 2 . We hence wish to solve $A \mathbf{x}=\mathbf{0}$. Row reduction gives the system $x_{1}+x_{3}=0$ and $x_{2}-x_{3}=0$, which can't be reduced further. Since the only free variable is x_{3} the eigenspace is one dimensional. Therefore the matrix can not be diagonalized.
2. Let A be a 2×2 matrix with eigenvalues $1 / 2$ and $-1 / 2$.

Let $\operatorname{Ker}\left(A-\frac{1}{2} I\right)=\operatorname{Span}\left\{\left[\begin{array}{l}2 \\ 1\end{array}\right]\right\}$ and $\operatorname{Ker}\left(A+\frac{1}{2} I\right)=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$.
(a) Let $\mathbf{x}(t+1)=\left[\begin{array}{l}x_{1}(t+1) \\ x_{2}(t+1)\end{array}\right]=A \mathbf{x}(t)$. Given that $\mathbf{x}(0)=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, find $\mathbf{x}(3)$.
(b) Draw the phase portrait for the discrete system in part (a).

Sol. (a) We have $\mathbf{x}(k)=A^{k} \mathbf{x}(0)$. We want to write $\mathbf{x}(0)=c_{1} \mathbf{b}_{1}+c_{2} \mathbf{b}_{2}$ where \mathbf{b}_{1} and \mathbf{b}_{2} are the eigenvectors corresponding to the eigenvalues $\lambda_{1}=1 / 2$ and $\lambda_{2}=-1 / 2$ respectively. Then $\mathbf{x}(k)=A^{k} \mathbf{x}(0)=c_{1} A^{k} \mathbf{b}_{1}+c_{2} A^{k} \mathbf{b}_{2}=c_{1} \lambda_{1}^{k} \mathbf{b}_{1}+c_{2} \lambda_{2}^{k} \mathbf{b}_{2}$.
Solving the system $\mathbf{x}(0)=c_{1} \mathbf{b}_{1}+c_{2} \mathbf{b}_{2}$ for c_{1} and c_{2} gives $c_{1}=0$ and $c_{2}=1$ so $\mathbf{x}(3)=(-1 / 2)^{3}\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
3. Let $A=\left[\begin{array}{ll}3 & 2 \\ 2 & 3\end{array}\right]$.
(a) Given that $\lambda=1$ and 5 are the only eigenvalues of A. Find an orthonormal basis of \mathbb{R}^{3} denoted by \mathcal{B} consisting of eigenvectors of A.
(b) Given the following quadratic form $q\left(x_{1}, x_{2}\right)=3 x_{1}^{2}+4 x_{1} x_{2}+3 x_{2}^{2}$.

Describe q in terms of \mathcal{B} coordinates. Show work.
Sol.(a) $\operatorname{Ker}(A-I)=\operatorname{Span}\left\{\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right\}$ and $\operatorname{Ker}(A-5 I)=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$, so $\mathbf{b}_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ and $\mathbf{b}_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1\end{array}\right]$ are orthonormal.
(b) We have $A=Q D Q^{T}$, where $D=\left[\begin{array}{ll}1 & 0 \\ 0 & 5\end{array}\right]$ and $Q=\left[\begin{array}{cc}\mathbf{b}_{1} & \prime \\ 1 & \mathbf{b}_{2} \\ 1 & 1\end{array}\right]$. Set $\mathbf{y}=Q^{T} \mathbf{x}$.

Then $q(\mathbf{x})=\langle\mathbf{x}, A \mathbf{x}\rangle=\left\langle\mathbf{x}, Q D Q^{T} \mathbf{x}\right\rangle=\left\langle Q^{T} \mathbf{x}, D Q^{T} \mathbf{x}\right\rangle=\langle\mathbf{y}, D \mathbf{y}\rangle=y_{1}^{2}+5 y_{2}^{2}=\widetilde{q}(\mathbf{y})$.
4. Let f denote a infinitely differentiable function on \mathbb{R}. Find all real solutions to the following differential equation $\frac{d^{2} f}{d t^{2}}-f(t)=0$.
Sol We have not covered this so we don't give a solution.
5. Let $A=\left[\begin{array}{ccc}1 & 0 & 1 \\ 2 & 1 & -2 \\ 3 & 1 & 0\end{array}\right]$.
(a) Find the inverse of A, if it exists.
(b) Give a basis of the Image of the transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined as $T(x)=A x$.

Sol. (a) We have

$$
\left.\begin{array}{rl}
{\left[\begin{array}{ccc|ccc}
1 & 0 & 1 & 1 & 0 & 0 \\
2 & 1 & -2 & 0 & 1 & 0 \\
3 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \Leftrightarrow} & {\left[\begin{array}{ccc|ccc}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & -4 & -2 & 1 & 0 \\
0 & 1 & -3 & -3 & 0 & 1
\end{array}\right](2)-2(1)-3(1)}
\end{array} \Leftrightarrow\left[\begin{array}{ccc|ccc}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & -4 & -2 & 1 & 0 \\
0 & 0 & 1 & -1 & -1 & 1
\end{array}\right](3)-(2)\right)
$$

Rem. We used that the same row operations that turn A into the identity I also turn the identity I into A^{-1}. This is because row operations correspond to multiplying with elementary matrices so if $E_{3} E_{2} E_{1} A=I$ and $B=E_{3} E_{2} E_{1} I=E_{3} E_{2} E_{1}$ then $B A=I$, i.e. $B=A^{-1}$.
(b) Since A is invertible T is invertible and the image of T is all of \mathbb{R}^{3} so the standard basis of \mathbb{R}^{3} is a basis of the image.
6. Consider $\left[\begin{array}{cc|c}1 & 1 & -2 \\ 1 & 2 & 1 \\ 1 & 1 & h\end{array}\right]$
(a) Given that the above is the augmented matrix of a system of equations, find h such that it is consistent.
(b) For $h=0$ find the least squares solution to the system.

Sol. Row reduction gives $\left[\begin{array}{cc|c}1 & 1 & -2 \\ 1 & 2 & 1 \\ 1 & 1 & h\end{array}\right] \Leftrightarrow\left[\begin{array}{ll|c}1 & 1 & -2 \\ 0 & 1 & 3 \\ 0 & 0 & h+2\end{array}\right]$
For this to be consistent we must have $h=-2$.
(b) The least square 'solution' to $A \mathbf{x}=\mathbf{b}$ is the solution to the normal equation $A^{T} A \mathbf{x}^{*}=A^{T} \mathbf{b}$. In this case $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 2 \\ 1 & 1\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right]$ so $A^{T} A=\left[\begin{array}{ll}3 & 4 \\ 4 & 6\end{array}\right]$ and $A^{T} \mathbf{b}=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$ and the normal equation is $\left[\begin{array}{ll}3 & 4 \\ 4 & 6\end{array}\right]\left[\begin{array}{l}x_{1}^{*} \\ x_{2}^{*}\end{array}\right]=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$. We have $\left[\begin{array}{ll}3 & 4 \\ 4 & 6\end{array}\right]^{-1}=\frac{1}{2}\left[\begin{array}{cc}6 & -4 \\ -4 & 3\end{array}\right]$ so $\left[\begin{array}{l}x_{1}^{*} \\ x_{2}^{*}\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}6 & -4 \\ -4 & 3\end{array}\right]\left[\begin{array}{c}-1 \\ 0\end{array}\right]=\left[\begin{array}{l}3 \\ 2\end{array}\right]$.
Remark The least square 'solution' \mathbf{x}^{*} to $A \mathbf{x}=\mathbf{b}$ is not a solution $A \mathbf{x}=\mathbf{b}$ but instead it is the \mathbf{x} that makes $\|A \mathbf{x}-\mathbf{b}\|^{2}$ as small as possible, i.e. $\|A \mathbf{x}-\mathbf{b}\|^{2} \geq\left\|A \mathbf{x}^{*}-\mathbf{b}\right\|^{2}$, for all \mathbf{x}. Since $\mathbf{p}=\operatorname{Proj}_{\operatorname{Im} A} \mathbf{b}$ is the closet point to \mathbf{b} in the image of A it follows that $A \mathbf{x}^{*}=\mathbf{p}$. Since \mathbf{p} is the orthogonal projection of \mathbf{b} onto $\operatorname{Im} A$ it follows that $\mathbf{p}-\mathbf{b}$ is orthogonal to $\operatorname{Im} A$ from which it follows that $A^{T}(\mathbf{p}-\mathbf{b})=\mathbf{0}$. (In fact $\left\langle A^{T}(\mathbf{p}-\mathbf{b}), \mathbf{y}\right\rangle=\langle\mathbf{p}-\mathbf{b}, A \mathbf{y}\rangle=0$ for all \mathbf{y}.) It follows that $A^{T} A \mathbf{x}^{*}=A^{T} \mathbf{b}$.
7. Let $\left\{\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$ and $\left\{\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ -1 \\ -2\end{array}\right]\right\}$ be two different bases of a subspace W in \mathbb{R}^{3}.
(a) Which of the two sets are orthogonal? Show work.
(b) Let $\mathbf{y}=\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$. Is $\mathbf{y} \in W$?
(c) Find $\operatorname{proj}_{W} \mathbf{y}$, that is, the orthogonal projection of \mathbf{y} onto W.

Sol. (a) Let $\mathbf{b}_{1}=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$ and $\mathbf{b}_{2}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$. Then $\mathbf{b}_{1} \cdot \mathbf{b}_{2}=0$ so they are orthogonal.
(b) That $\mathbf{y} \in W$ is equivalent to that there are comstants c_{1}, c_{2} such that $\mathbf{y}=c_{1} \mathbf{b}_{1}+c_{2} \mathbf{b}_{2}$ i.e. $c_{1}\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]+c_{2}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$. The second component says that $c_{2}=2$ and the third component says that $c_{1}=c_{2}=2$ but the first components says that $c_{1}+c_{2}=2+2=1$ which is not possible.
(c) The vectors $\mathbf{u}_{1}=\mathbf{b}_{1} /\left\|\mathbf{b}_{1}\right\|$ and $\mathbf{u}_{2}=\mathbf{b}_{2} /\left\|\mathbf{b}_{2}\right\|$ form an orthonormal set. The projection is

$$
\operatorname{proj}_{W} \mathbf{y}=\left(\mathbf{y} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+\left(\mathbf{y} \cdot \mathbf{u}_{2}\right) \mathbf{u}_{2}=\frac{\mathbf{y} \cdot \mathbf{b}_{1}}{\left\|\mathbf{b}_{1}\right\|^{2}} \mathbf{b}_{1}+\frac{\mathbf{y} \cdot \mathbf{b}_{2}}{\left\|\mathbf{b}_{2}\right\|^{2}} \mathbf{b}_{2}=\frac{1}{2}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]+\frac{3}{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
3 / 2 \\
1 \\
1 / 2
\end{array}\right] .
$$

8. Let A be a 2×2 matrix with eigenvalues 1 and 3 ,
such that $\operatorname{Ker}(A-I)=\operatorname{Span}\left\{\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right\}$ and $\operatorname{Ker}(A-3 I)=\operatorname{Span}\left\{\left[\begin{array}{c}1 \\ -3\end{array}\right]\right\}$.
(a) Find A. Show work.
(b) Let T denote the transformation $T \mathbf{x}=A \mathbf{x}$. Write down the matrix of the transformation T with respect to the basis $\left.\left\{\begin{array}{c}-1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -3\end{array}\right]\right\}$. Show work.
Sol. (a) Since the eigenvalues are different A can be diagonalized $A=S D S^{-1}$, where $D=\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right]$ and $S=\left[\begin{array}{cc}-1 & 1 \\ 1 & -3\end{array}\right]$ and hence $S^{-1}=\frac{1}{2}\left[\begin{array}{ll}-3 & -1 \\ -1 & -1\end{array}\right]$. Hence $A=\ldots$.
(b) The matrix is the matrix D in (a).
9. Answer the following in short. Give justification for your answers.
(i) Let \mathcal{D} denote the space of differentiable functions from $\mathbb{R} \rightarrow \mathbb{R}$. Is the function
$\langle\rangle:, \mathcal{D} \times \mathcal{D} \rightarrow \mathbb{R}$ defined as $\langle f, g\rangle=f(0) g^{\prime}(0)+f^{\prime}(0) g(0)$ an inner product on \mathcal{D} ?
(ii) Let $V=\operatorname{Span}\left\{\left[\begin{array}{c}-1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{l}0 \\ 3 \\ 1\end{array}\right],\left[\begin{array}{c}0 \\ -1 \\ -2\end{array}\right]\right\}$. Find the dimension of V. Explain your answer.
(iii) Let A be a 2×2 matrix with eigenvalues $-1 \pm 2 i$. Then consider the system of differential equations,

$$
\frac{d}{d t}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=A\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

What happens to $x(t)$ as $t \rightarrow \infty$? Show work.
(iv) Let A be a 2×2 matrix such that $A^{3}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. Then find $\operatorname{Ker} A$.

Sol. (i) No because we can have $\langle f, f\rangle=0$ with $f \neq 0$.
(ii) The second and third vector span the plane $x_{1}=0$ since none is a multiple of the other. However the first vector does not lie in this plane since the first component is not 0 , therefore the three vectors span 3 dimensions so they are linearly independent.
(iii) We didn't do systems of differential equations so we don't give the solution to this part.
(iv) Since $(\operatorname{det} A)^{3}=\operatorname{det} A^{3}=\operatorname{det} I=1$ it follows that $\operatorname{det} A \neq 0$ so A is invertible.
10. State true or false with justification.
(i) If A is a orthogonal 3×3 matrix then $\operatorname{det} A>0$.
(ii) Let $W=\operatorname{Span}\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right\}$ and $\mathbf{w}_{2} \in \operatorname{Span}\left\{\mathbf{w}_{1}, \mathbf{w}_{3}\right\}$ then $W=\operatorname{Span}\left\{\mathbf{w}_{1}, \mathbf{w}_{3}\right\}$.
(iii) Let $T: V \rightarrow W$ be an invertible linear transformation from a vector space V to another vector space W. If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is a linearly independent subset of V, then $\left\{T \mathbf{v}_{1}, T \mathbf{v}_{2}, T \mathbf{v}_{3}\right\}$ is a linearly independent set in W.
(iv) If A is a 2×2 symmetric matrix then all its eigenvalues are positive real numbers.

Sol. (i) False, since Q could be a reflection, even just $-I$.
(ii) True, since if $\mathbf{v}=c_{1} \mathbf{w}_{1}+c_{2} \mathbf{w}_{2}+c_{3} \mathbf{w}_{3}$ and $\mathbf{w}_{2}=d_{1} \mathbf{w}_{1}+d_{3} \mathbf{w}_{3}$
then $\mathbf{v}=\left(c_{1}+c_{2} d_{1}\right) \mathbf{w}_{1}+\left(c_{3}+d_{3} c_{2}\right) \mathbf{w}_{3}$.
(iii) True, since T is invertible $c_{1} T \mathbf{v}_{1}+c_{2} T \mathbf{v}_{2}+c_{3} T \mathbf{v}_{3}=T\left(c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}\right)=\mathbf{0}$ implies $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}=\mathbf{0}$, which since they are linearly independent implies that $c_{1}=c_{2}=c_{3}=0$.
(iv) False, since again we could take $A=-I$.

