Linear algebra (math 110.201)

Final Exam - 4 May 2016

Name: _____

Section number/TA:

Instructions:

- (1) Do not open this packet until instructed to do so.
- (2) This midterm should be completed in **3 hours**.
- (3) Notes, the textbook, and digital devices are not permitted.
- (4) Discussion or collaboration is **not permitted**.
- (5) All solutions must be written on the pages of this booklet.
- (6) Justify your answers, and write clearly; points will be subtracted otherwise.
- (7) Once you submit your exam, you will not be allowed to modify it.
- (8) By submitting this exam, you are agreeing to the above terms. Cheating or refusing to stop writing when time is called may result in an automatic failure.

Exercise	Points	Your score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
11	10	
12	10	
13	10	
14	10	
15	10	
16	10	
17	10	
18	10	
Total	180	

Exercise 1. Consider the following system of equations, where λ is a real number:

$$2W + 2X + 3Y + 3Z = 1$$

$$3W + 3X + 4Y + 4Z = \lambda^2$$

$$4W + 4X + 5Y + 5Z = \lambda$$

- (1) (2 points) Write down the augmented matrix of this system.
- (2) (4 points) For which real numbers λ does this system have at least one solution? Can it ever have exactly one solution?
- (3) (4 points) For the cases in which the system has at least one solution, describe all solutions.

Exercise 2. (10 points) Let a denote a real number, and consider the matrix:

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ a & 1 & 0 & 0 \\ 0 & a & 1 & 0 \\ a & 0 & a & 1 \end{pmatrix}$$

For which values of a is this matrix invertible? For those values of a, write down A^{-1} in terms of a.

Exercise 3. Consider the following vectors:

$$\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$
 and $\vec{y} = \begin{bmatrix} 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}$

- (1) (4 points) Calculate ||x|| and ||y||.
 (2) (4 points) Calculate the dot product x · (x y).
 (3) (2 points) Calculate the distance between x and y.

Exercise 4. (10 points) Suppose that \vec{x} and \vec{y} are linearly independent vectors in \mathbb{R}^n . Show that the vectors $\vec{x} + \vec{y}$ and $\vec{x} - \vec{y}$ must also be linearly independent.

Exercise 5. Consider the vectors $\vec{x} = \begin{bmatrix} 1\\ -1\\ -2\\ -3 \end{bmatrix}$ and $\vec{y} = \begin{bmatrix} 0\\ 1\\ 2\\ 4 \end{bmatrix}$. Let $W \subseteq \mathbb{R}^4$ denote the set of all vectors in \mathbb{R}^4 which are orthogonal to both \vec{x} and \vec{y} .

- (1) (5 points) Verify that W is a subspace of \mathbb{R}^4 .
- (2) (5 points) Find a basis for W. What is $\dim(W)$?

Exercise 6. Consider the following matrix:

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \end{pmatrix}$$

- (1) (2 points) Compute RREF(A).
- (2) (4 points) Find a basis for Ker(A). What is $\dim(Ker(A))$?
- (3) (4 points) Find a basis for Im(A). What is dim(Im(A))?

Exercise 7. (10 points) Let \mathscr{B} denote the basis $\begin{bmatrix} 2\\1 \end{bmatrix}, \begin{bmatrix} -2\\1 \end{bmatrix}$ of \mathbb{R}^2 . Suppose that $T : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation whose matrix with respect to \mathscr{B} is $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$. What is the matrix of T with respect to the standard basis of \mathbb{R}^2 ? Express your answer in terms of a, b, c, d.

Exercise 8. (10 points) Let B be a $m \times n$ matrix and let C be a $n \times k$ matrix. Show that if \vec{y} is in Im(BC), then \vec{y} is in Im(B). Explain why this tells us that rank(BC) $\leq rank(B)$.

Exercise 9. Let $W \subseteq P_3(\mathbb{R})$ denote the set of all polynomials of dergree ≤ 3 which satisfy f(1) = 0 and f(-2) = 0.

- (1) (2 points) Give an example of a polynomial of degree exactly equal to 3 which satisfies f(1) = 0 and f(-2) = 0.
- (2) (4 points) Show that W is a subspace of $P_3(\mathbb{R})$.
- (3) (4 points) Find a basis for W. What is $\dim(W)$?

Exercise 10. Consider the following vectors in \mathbb{R}^5 :

$$v_1 = \begin{bmatrix} 0\\0\\2\\0\\0 \end{bmatrix} \qquad v_2 = \begin{bmatrix} 3\\4\\1\\0\\0 \end{bmatrix} \qquad v_3 = \begin{bmatrix} 12\\9\\1\\0\\0 \end{bmatrix}$$

and put $W = Span(v_1, v_2, v_3)$. These vectors are linearly independent.

- (1) (4 points) Perform the Gram-Schmidt process on v_1, v_2, v_3 to obtain an orthonormal basis of W.
- (2) (4 points) What is the matrix of $\operatorname{Proj}_W : \mathbb{R}^5 \to \mathbb{R}^5$? (3) (2 points) Calculate the projection of the vector

$$\vec{x} = \begin{bmatrix} 1\\2\\1\\2\\1 \end{bmatrix}$$

onto W.

Exercise 11. (10 points) Consider the following matrix and vector:

$$A = \begin{pmatrix} 1 & -2 & -3 \\ 2 & 1 & 4 \\ 0 & 1 & 2 \end{pmatrix} \qquad \vec{y} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

The system of equations $A\vec{x} = \vec{y}$ has no exact solutions \vec{x} in \mathbb{R}^3 . Find all least squares solutions to this system.

Exercise 12. Consider the vector space C[0,1] of continuous functions on the interval [0,1], together with its inner product $\langle f,g \rangle = \int_0^1 f(x)g(x)dx$.

- (1) (5 points) Viewing the space $P_1(\mathbb{R})$ of polynomials of degree ≤ 1 as a subspace of $\mathcal{C}[0,1]$, construct an orthonormal basis of $P_1(\mathbb{R})$ from the basis 1, X using the Gram-Schmidt algorithm.
- (2) (5 points) Let f denote the function $f(t) = t^2$ on [0,1]. Calculate $\operatorname{Proj}_{P_1(\mathbb{R})}(f)$.

Exercise 13. (10 points) Suppose that A is an $n \times n$ matrix having the property that the sum of entries in each row is equal to 0. For example, the following matrix has this property:

$$\begin{pmatrix} 1 & -2 & 1 \\ 3 & -2 & -1 \\ -5 & 1 & 4 \end{pmatrix}$$

If A is an $n \times n$ matrix with this property, what must det(A) be equal to?

Exercise 14. (10 points) Consider the following matrix:

$$A = \begin{pmatrix} 0 & 1 & 0 & -2 & 0 & 2 \\ 0 & 2 & 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 2 & 5 & -3 & 0 & 2 \\ 0 & 1 & 0 & -2 & 0 & 3 \\ 1 & 3 & 0 & 1 & 0 & 2 \end{pmatrix}$$

(1) Calculate det(A).

(2) Is the matrix A invertible?

Exercise 15. (10 points) Suppose A is a $n \times n$ real matrix with $A^7 = I_n$. What is det(A)?

Exercise 16. Consider the following matrix:

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & 2 \\ 3 & 1 & 3 \end{pmatrix}$$

(1) (5 points) Which of the following vectors are eigenvectors of A? For those which are eigenvectors, state what their corresponding eigenvalues are.

$$\vec{0} = \begin{bmatrix} 0\\0\\0 \end{bmatrix} \qquad \vec{x}_1 = \begin{bmatrix} -1\\-1\\2 \end{bmatrix} \qquad \vec{x}_2 = \begin{bmatrix} 1\\1\\1 \end{bmatrix} \qquad \vec{x}_3 = \begin{bmatrix} -1\\0\\1 \end{bmatrix} \qquad \vec{x}_4 = \begin{bmatrix} 7\\12\\11 \end{bmatrix}$$

(2) (5 points) Is A diagonalizable? Explain why or why not. (You are not asked to diagonalize A).

Exercise 17. Consider the following matrix:

 $\left(\begin{array}{cc} -15 & 56 \\ -4 & 15 \end{array}\right)$

- (1) (2 points) Find all real eigenvalues of A.
- (2) (6 points) Is A diagonalizable? If so, write it in the form $A = S\Lambda S^{-1}$ with Λ diagonal and S invertible.
- (3) (2 points) Compute A^{200} .

Exercise 18. Consider the matrix

$$A = \begin{pmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{pmatrix}$$

The matrix A has 1 and 2 as eigenvalues.

- (1) (3 points) Find a basis for the eigenspace E_1 .
- (2) (3 points) Find a basis for the eigenspace E_2 .
- (3) (2 points) Can A have any other eigenvalues? Why or why not?
- (4) (2 points) Is A diagonalizable? Explain why or why not. (You are not asked to diagonalize A).