11. Lecture 11: 3.4 Coordinates

Recall that $\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}$ form a basis for a subspace V if they span V and are linearly independent. The Unique Representation Theorem Let $\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}$ be a basis for a subspace V. Then for any $\mathbf{x} \in V$, there is unique set of scalars c_{1}, \ldots, c_{n} such that

$$
\begin{equation*}
\mathbf{x}=c_{1} \mathbf{b}_{1}+\cdots+c_{n} \mathbf{b}_{n} \tag{11.1}
\end{equation*}
$$

Suppose $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ is a basis. The \mathcal{B}-coordinates of \mathbf{x} are the weights c_{1}, \cdots, c_{n} such that $\mathbf{x}=c_{1} \mathbf{b}_{1}+\cdots+c_{n} \mathbf{b}_{n}$ and the \mathcal{B}-coordinate vector of \mathbf{x} is the vector

$$
[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right]
$$

Equation 11.1) can be written

$$
\begin{aligned}
& \text { written } \\
& \mathbf{x}=S[\mathbf{x}]_{\mathcal{B}}, \quad \text { where } \quad S=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\mathbf{b}_{1} \mathbf{b}_{2} \cdots & \mathbf{b}_{n} \\
| | & \mid
\end{array}\right]
\end{aligned}
$$

Th If $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ is a basis for a subspace V then the coordinate map $\mathbf{x} \rightarrow[\mathbf{x}]_{\mathcal{B}}$ is a one-to-one linear transformation from V to \mathbf{R}^{n}.
Ex 1 Let V be the plane $x_{1}-x_{2}+x_{3}=0$. Then $\mathbf{b}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$ and $\mathbf{b}_{2}=\left[\begin{array}{c}2 \\ 1 \\ -1\end{array}\right]$ form a basis \mathcal{B} for
V, since they lie in the plane and are not parallel. It is easy to check that $\mathbf{x}=\left[\begin{array}{l}7 \\ 8 \\ 1\end{array}\right]$ lies in V.
Find c_{1} and c_{2} so $\mathbf{x}=c_{1} \mathbf{b}_{1}+c_{2} \mathbf{b}_{2}$.
Sol Using row reduction on the augmented matrix $\left[\begin{array}{ccc}1 & 2 & 7 \\ 2 & 1 & 8 \\ 1 & -1 & 1\end{array}\right]$ we find that $[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}3 \\ 2\end{array}\right]$.

Ex 2 Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$, where $\mathbf{b}_{1}=\left[\begin{array}{l}3 \\ 1\end{array}\right]$ and $\mathbf{b}_{1}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$, and let $\mathcal{E}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$, where $\mathbf{e}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\mathbf{e}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Let $\mathbf{x}=\left[\begin{array}{l}6 \\ 5\end{array}\right]$. Find $[\mathbf{x}]_{\mathcal{B}}$ and $[\mathbf{x}]_{\mathcal{E}}$.
Sol We can write

$$
\left[\begin{array}{l}
6 \\
5
\end{array}\right]=6\left[\begin{array}{l}
1 \\
0
\end{array}\right]+5\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

so $[\mathbf{x}]_{\mathcal{E}}=\left[\begin{array}{l}6 \\ 5\end{array}\right]$. We want to find c_{1} and c_{2} such that

$$
\left[\begin{array}{l}
6 \\
5
\end{array}\right]=c_{1}\left[\begin{array}{l}
3 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

solving the system gives that $c_{1}=2$ and $c_{2}=3$. Hence $[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$.
One can graph this in standard \mathcal{E} graph paper and in \mathcal{B} graph paper.

Note that in the example

$$
\left[\begin{array}{l}
6 \\
5
\end{array}\right]=\left[\begin{array}{ll}
3 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

In general for a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$;

$$
\mathbf{x}=S[\mathbf{x}]_{\mathcal{B}}, \quad \text { where } \quad S=\left[\begin{array}{lll}
\mathbf{b}_{1} & \cdots & \mathbf{b}_{n}
\end{array}\right]
$$

and $[\mathbf{x}]_{\mathcal{B}}$ the coordinate vector. We call S the change-of-coordinate matrix from the standard basis in \mathbf{R}^{n} to the basis \mathcal{B}.
Ex 3 Find the coordinates of $\mathbf{x}=\left[\begin{array}{l}6 \\ 8\end{array}\right]$ in the basis $\mathbf{b}_{1}, \mathbf{b}_{2}$ in the previous example.
Sol $S=\left[\begin{array}{ll}\mathbf{b}_{1} & \mathbf{b}_{2}\end{array}\right]=\left[\begin{array}{ll}3 & 0 \\ 1 & 1\end{array}\right]$ and $S^{-1}=\left[\begin{array}{cc}1 / 3 & 0 \\ -1 / 3 & 1\end{array}\right]$.
Then $[\mathbf{x}]_{\mathcal{B}}=S^{-1} \mathbf{x}=\left[\begin{array}{cc}1 / 3 & 0 \\ -1 / 3 & 1\end{array}\right]\left[\begin{array}{l}6 \\ 8\end{array}\right]=\left[\begin{array}{l}2 \\ 6\end{array}\right]$.

Expressing a Linear Transformation in Terms of different bases

Ex 4 Let L be the line in \mathbf{R}^{2} that is spanned by the vector $\left[\begin{array}{l}3 \\ 1\end{array}\right]$.
Let T be the linear transformation that projects any vector orthogonally onto L.
Find the matrix A for T in the standard coordinate system.
Sol We now pick a coordinate system $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ with \mathbf{b}_{1} parallel to the line and \mathbf{b}_{2} perpendicular to the line

$$
\mathbf{b}_{1}=\left[\begin{array}{l}
3 \\
1
\end{array}\right], \quad \mathbf{b}_{2}=\left[\begin{array}{c}
-1 \\
3
\end{array}\right]
$$

If $\mathbf{x}=c_{1} \mathbf{b}_{1}+c_{2} \mathbf{b}_{2}$ then $T(\mathbf{x})=c_{1} \mathbf{b}_{1}$. Equivalently, if $[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{c}c_{1} \\ c_{2}\end{array}\right]$ then $[T(\mathbf{x})]_{\mathcal{B}}=\left[\begin{array}{c}c_{1} \\ 0\end{array}\right]$:

$$
[T(\mathbf{x})]_{\mathcal{B}}=B[\mathbf{x}]_{\mathcal{B}}, \quad B=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

The matrix B for T in the \mathcal{B} coordinate system is hence very simple.
The matrix for A for T in the standard coordinates is more complicated but one can calculate it from B :

where $S=\left[\begin{array}{ll}\mathbf{b}_{1} & \mathbf{b}_{2}\end{array}\right]=\left[\begin{array}{cc}3 & -1 \\ 1 & 3\end{array}\right]$ and $S^{-1}=\frac{1}{10}\left[\begin{array}{cc}3 & 1 \\ -1 & 3\end{array}\right]$. Hence

$$
A=S B S^{-1}=\left[\begin{array}{cc}
3 & -1 \\
1 & 3
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \frac{1}{10}\left[\begin{array}{cc}
3 & 1 \\
-1 & 3
\end{array}\right]=\frac{1}{10}\left[\begin{array}{ll}
9 & 3 \\
3 & 1
\end{array}\right]
$$

In general if T is a linear transformation from $\mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ then

$$
[T(\mathbf{x})]_{\mathcal{B}}=B[\mathbf{x}]_{\mathcal{B}}
$$

where

$$
B=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
{\left[T\left(\mathbf{b}_{1}\right)\right]_{\mathcal{B}}\left[T\left(\mathbf{b}_{2}\right)\right]_{\mathcal{B}} \cdots} & {\left[T\left(\mathbf{b}_{n}\right)\right]_{\mathcal{B}}} \\
\mid & \mid & \mid
\end{array}\right]
$$

Two matrices A and B are called similar if there is an invertible matrix S such that $A=$ $S B S^{-1}$.

Summary and Questions

Suppose $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ is a basis for a subspace V of \mathbf{R}^{m}. The \mathcal{B}-coordinates of \mathbf{x} are the weights c_{1}, \cdots, c_{n} such that

We have

$$
\mathbf{x}=c_{1} \mathbf{b}_{1}+\cdots+c_{n} \mathbf{b}_{n}=S[\mathbf{x}]_{\mathcal{B}}, \quad \text { where } \quad S=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\mathbf{b}_{1} \mathbf{b}_{2} \cdots \mathbf{b}_{n}+\cdots+c_{n} \mathbf{b}_{n}, \quad[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{c}
c_{1} \\
\vdots \\
\vdots \\
c_{n}
\end{array}\right] . & \mid
\end{array}\right]
$$

Here S is called the change of coordinate matrix and $[\mathbf{x}]_{\mathcal{B}}$ the \mathcal{B}-coordinate vector of \mathbf{x}.
Let T be a linear transformation from $\mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ with matrix A in the standard coordinates. Suppose $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ is a basis for \mathbf{R}^{n}. Then there is a linear transformation, with matrix B, taking $[\mathbf{x}]_{\mathcal{B}}$ to $[T(\mathbf{x})]_{\mathcal{B}}$

$$
\begin{equation*}
[T(\mathbf{x})]_{\mathcal{B}}=B[\mathbf{x}]_{\mathcal{B}}, \tag{11.2}
\end{equation*}
$$

i.e. if we express \mathbf{x} and $T(\mathbf{x})$ in the basis then the linear transformation of their coefficients;

$$
\begin{array}{r}
\mathbf{x}=c_{1} \mathbf{b}_{1}+\cdots+c_{n} \mathbf{b}_{n} \xrightarrow{A} T(\mathbf{x})=d_{1} \mathbf{b}_{1}+\cdots+d_{n} \mathbf{b}_{n} \\
\downarrow \\
{[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right] \quad \xrightarrow{B} \quad[T(\mathbf{x})]_{\mathcal{B}}=\left[\begin{array}{c}
d_{1} \\
\vdots \\
d_{n}
\end{array}\right]}
\end{array}
$$

has matrix B. The matrix B is calculated from the following commutative diagram

i.e. B is similar to A :

$$
B=S^{-1} A S
$$

However, the point is that we can start from the other end and choose a basis in which T, i.e. the matrix B, becomes simple. Substituting \mathbf{b}_{i} into 11.2 we see that

$$
B=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
{\left[T\left(\mathbf{b}_{1}\right)\right]_{\mathcal{B}}\left[T\left(\mathbf{b}_{2}\right)\right]_{\mathcal{B}} \cdots} & \left.\cdots T\left(\mathbf{b}_{n}\right)\right]_{\mathcal{B}} \\
\mid & \mid & \mid
\end{array}\right]
$$

If we can find a basis in which B is simple then we can find A by

$$
A=S B S^{-1} .
$$

In particular we may be able to find a basis in which B is diagonal, i.e, such that

$$
T\left(\mathbf{b}_{i}\right)=\lambda_{i} \mathbf{b}_{i}, \quad \text { for } \quad i=1, \ldots, n
$$

This is the case for the projection onto the line L in \mathbf{R}^{2} spanned by $\left[\begin{array}{l}3 \\ 1\end{array}\right]$.
Pick a coordinate system $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ with $\mathbf{b}_{1}=\left[\begin{array}{l}3 \\ 1\end{array}\right]$ parallel to the line and $\mathbf{b}_{2}=\left[\begin{array}{c}-1 \\ 3\end{array}\right]$ perpendicular to the line. Then $T\left(\mathbf{b}_{1}\right)=\mathbf{b}_{1}$, and $T\left(\mathbf{b}_{2}\right)=\mathbf{0}$.

