11. Lecture 11: 3.4 Coordinates

Recall that $\mathbf{b}_1,...,\mathbf{b}_n$ form a **basis** for a subspace V if they span V and are linearly independent. **The Unique Representation Theorem** Let $\mathbf{b}_1,...,\mathbf{b}_n$ be a basis for a subspace V. Then for any $\mathbf{x} \in V$, there is unique set of scalars $c_1,...,c_n$ such that

$$\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n. \tag{11.1}$$

Suppose $\mathcal{B} = {\mathbf{b}_1, ..., \mathbf{b}_n}$ is a basis. The \mathcal{B} -coordinates of \mathbf{x} are the weights c_1, \cdots, c_n such that $\mathbf{x} = c_1 \mathbf{b}_1 + \cdots + c_n \mathbf{b}_n$ and the \mathcal{B} -coordinate vector of \mathbf{x} is the vector

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$$

Equation (11.1) can be written

written

$$\mathbf{x} = S[\mathbf{x}]_{\mathcal{B}}, \quad \text{where} \quad S = \begin{bmatrix} | & | & | \\ \mathbf{b}_1 \mathbf{b}_2 \cdots \mathbf{b}_n \\ | & | & | \end{bmatrix}$$

Th If $\mathcal{B} = {\mathbf{b}_1, \ldots, \mathbf{b}_n}$ is a basis for a subspace V then the coordinate map $\mathbf{x} \to [\mathbf{x}]_{\mathcal{B}}$ is a one-to-one linear transformation from V to \mathbf{R}^n .

Ex 1 Let *V* be the plane $x_1 - x_2 + x_3 = 0$. Then $\mathbf{b}_1 = \begin{bmatrix} 1\\ 2\\ 1 \end{bmatrix}$ and $\mathbf{b}_2 = \begin{bmatrix} 2\\ 1\\ -1 \end{bmatrix}$ form a basis \mathcal{B} for *V*, since they lie in the plane and are not parallel. It is easy to check that $\mathbf{x} = \begin{bmatrix} 7\\ 8\\ 1 \end{bmatrix}$ lies in *V*. Find c_1 and c_2 so $\mathbf{x} = c_1\mathbf{b}_1 + c_2\mathbf{b}_2$. **Sol** Using row reduction on the augmented matrix $\begin{bmatrix} 1 & 2 & 7\\ 2 & 1 & 8\\ 1 - 1 & 1 \end{bmatrix}$ we find that $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} c_1\\ c_2 \end{bmatrix} = \begin{bmatrix} 3\\ 2 \end{bmatrix}$.

Ex 2 Let $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$, where $\mathbf{b}_1 = \begin{bmatrix} 3\\1 \end{bmatrix}$ and $\mathbf{b}_1 = \begin{bmatrix} 0\\1 \end{bmatrix}$, and let $\mathcal{E} = \{\mathbf{e}_1, \mathbf{e}_2\}$, where $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Let $\mathbf{x} = \begin{bmatrix} 6 \\ 5 \end{bmatrix}$. Find $[\mathbf{x}]_{\mathcal{B}}$ and $[\mathbf{x}]_{\mathcal{E}}$. Sol We can write $\begin{bmatrix} 6\\5 \end{bmatrix} = 6 \begin{bmatrix} 1\\0 \end{bmatrix} + 5 \begin{bmatrix} 0\\1 \end{bmatrix}$ so $[\mathbf{x}]_{\mathcal{E}} = \begin{bmatrix} 6\\5 \end{bmatrix}$. We want to find c_1 and c_2 such that $\begin{bmatrix} 6\\5 \end{bmatrix} = c_1 \begin{bmatrix} 3\\1 \end{bmatrix} + c_2 \begin{bmatrix} 0\\1 \end{bmatrix}$

solving the system gives that $c_1 = 2$ and $c_2 = 3$. Hence $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 2\\ 3 \end{bmatrix}$.

One can graph this in standard \mathcal{E} graph paper and in \mathcal{B} graph paper.

Note that in the example

$$\begin{bmatrix} 6\\5 \end{bmatrix} = \begin{bmatrix} 3 & 0\\1 & 1 \end{bmatrix} \begin{bmatrix} 2\\3 \end{bmatrix}$$

In general for a basis $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\};\$

$$\mathbf{x} = S[\mathbf{x}]_{\mathcal{B}}, \quad \text{where} \quad S = \begin{bmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_n \end{bmatrix}$$

and $[\mathbf{x}]_{\mathcal{B}}$ the coordinate vector. We call *S* the **change-of-coordinate matrix** from the standard basis in \mathbf{R}^n to the basis \mathcal{B} . **Ex 3** Find the coordinates of $\mathbf{x} = \begin{bmatrix} 6\\ 8 \end{bmatrix}$ in the basis $\mathbf{b}_1, \mathbf{b}_2$ in the previous example.

Sol
$$S = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 1 & 1 \end{bmatrix}$$
 and $S^{-1} = \begin{bmatrix} 1/3 & 0 \\ -1/3 & 1 \end{bmatrix}$.
Then $[\mathbf{x}]_{\mathcal{B}} = S^{-1}\mathbf{x} = \begin{bmatrix} 1/3 & 0 \\ -1/3 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 8 \end{bmatrix} = \begin{bmatrix} 2 \\ 6 \end{bmatrix}$.

EXPRESSING A LINEAR TRANSFORMATION IN TERMS OF DIFFERENT BASES

Ex 4 Let *L* be the line in \mathbb{R}^2 that is spanned by the vector $\begin{bmatrix} 3\\1 \end{bmatrix}$.

Let T be the linear transformation that projects any vector orthogonally onto L. Find the matrix A for T in the standard coordinate system.

Sol We now pick a coordinate system $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ with \mathbf{b}_1 parallel to the line and \mathbf{b}_2 perpendicular to the line

$$\mathbf{b}_{1} = \begin{bmatrix} 3\\1 \end{bmatrix}, \qquad \mathbf{b}_{2} = \begin{bmatrix} -1\\3 \end{bmatrix}$$

If $\mathbf{x} = c_{1}\mathbf{b}_{1} + c_{2}\mathbf{b}_{2}$ then $T(\mathbf{x}) = c_{1}\mathbf{b}_{1}$. Equivalently, if $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} c_{1}\\c_{2} \end{bmatrix}$ then $[T(\mathbf{x})]_{\mathcal{B}} = \begin{bmatrix} c_{1}\\0 \end{bmatrix}$:
 $[T(\mathbf{x})]_{\mathcal{B}} = B[\mathbf{x}]_{\mathcal{B}}, \qquad B = \begin{bmatrix} 1 & 0\\0 & 0 \end{bmatrix}$

The matrix B for T in the \mathcal{B} coordinate system is hence very simple. The matrix for A for T in the standard coordinates is more complicated but one can calculate it from B:

$$\mathbf{x} \xrightarrow{A} T(\mathbf{x})$$

$$s \uparrow \qquad \uparrow s ,$$

$$[\mathbf{x}]_{\mathcal{B}} \xrightarrow{B} [T(\mathbf{x})]_{\mathcal{B}}$$

where
$$S = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ 1 & 3 \end{bmatrix}$$
 and $S^{-1} = \frac{1}{10} \begin{bmatrix} 3 & 1 \\ -1 & 3 \end{bmatrix}$. Hence
$$A = SBS^{-1} = \begin{bmatrix} 3 & -1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \frac{1}{10} \begin{bmatrix} 3 & 1 \\ -1 & 3 \end{bmatrix} = \frac{1}{10} \begin{bmatrix} 9 & 3 \\ 3 & 1 \end{bmatrix}$$

In general if T is a linear transformation from $\mathbf{R}^n \to \mathbf{R}^n$ then

$$\left[T(\mathbf{x})\right]_{\mathcal{B}} = B\left[\mathbf{x}\right]_{\mathcal{B}}$$

where

$$B = \begin{bmatrix} | & | & | \\ [T(\mathbf{b}_1)]_{\mathcal{B}} [T(\mathbf{b}_2)]_{\mathcal{B}} \cdots [T(\mathbf{b}_n)]_{\mathcal{B}} \\ | & | \end{bmatrix}$$

Two matrices A and B are called **similar** if there is an invertible matrix S such that $A = SBS^{-1}$.

SUMMARY AND QUESTIONS

Suppose $\mathcal{B} = {\mathbf{b}_1, ..., \mathbf{b}_n}$ is a basis for a subspace V of \mathbf{R}^m . The \mathcal{B} -coordinates of \mathbf{x} are the weights c_1, \cdots, c_n such that

we have $\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n,$ $\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n = S [\mathbf{x}]_{\mathcal{B}}, \quad \text{where} \quad S = \begin{bmatrix} | & | & | \\ \mathbf{b}_1 \mathbf{b}_2 \cdots \mathbf{b}_n \\ | & | & | \end{bmatrix}, \quad [\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}.$

Here S is called the change of coordinate matrix and $[\mathbf{x}]_{\mathcal{B}}$ the \mathcal{B} -coordinate vector of \mathbf{x} .

Let T be a linear transformation from $\mathbf{R}^n \to \mathbf{R}^n$ with matrix A in the standard coordinates. Suppose $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ is a basis for \mathbf{R}^n . Then there is a linear transformation, with matrix B, taking $[\mathbf{x}]_{\mathcal{B}}$ to $[T(\mathbf{x})]_{\mathcal{B}}$ $[T(\mathbf{x})]_{\mathcal{B}} = B[\mathbf{x}]_{\mathcal{B}}$, (11.2)

i.e. if we express x and T(x) in the basis then the linear transformation of their coefficients;

has matrix B. The matrix B is calculated from the following commutative diagram

$$\mathbf{x} \xrightarrow{A} T(\mathbf{x})$$

$$s \uparrow \qquad \uparrow s ,$$

$$[\mathbf{x}]_{\mathcal{B}} \xrightarrow{B} [T(\mathbf{x})]_{\mathcal{B}}$$

$$B = S^{-1}AS.$$

i.e. B is **similar** to A:

However, the point is that we can start from the other end and choose a basis in which T, i.e. the matrix B, becomes simple. Substituting \mathbf{b}_i into (11.2) we see that

$$B = \begin{bmatrix} | & | & | \\ [T(\mathbf{b}_1)]_{\mathcal{B}} [T(\mathbf{b}_2)]_{\mathcal{B}} \cdots [T(\mathbf{b}_n)]_{\mathcal{B}} \\ | & | & | \end{bmatrix}$$

If we can find a basis in which B is simple then we can find A by

$$A = SBS^{-1}$$

In particular we may be able to find a basis in which B is diagonal, i.e., such that

 $T(\mathbf{b}_i) = \lambda_i \mathbf{b}_i, \quad \text{for} \quad i = 1, \dots, n.$ This is the case for the projection onto the line L in \mathbf{R}^2 spanned by $\begin{bmatrix} 3\\1 \end{bmatrix}$. Pick a coordinate system $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ with $\mathbf{b}_1 = \begin{bmatrix} 3\\1 \end{bmatrix}$ parallel to the line and $\mathbf{b}_2 = \begin{bmatrix} -1\\3 \end{bmatrix}$ perpendicular to the line. Then $T(\mathbf{b}_1) = \mathbf{b}_1$, and $T(\mathbf{b}_2) = \mathbf{0}$.