Let $V$ and $W$ be two vector spaces. Let $T$ be a transformation from $V$, called the domain, to $W$, called the target space. Then $T$ is called linear if

$$
T(\mathbf{x}+\mathbf{z})=T(\mathbf{x})+T(\mathbf{z}), \quad \text { and } \quad T(\lambda \mathbf{x})=\lambda T(\mathbf{x})
$$

The set

$$
\operatorname{Im}(T)=\{T(f) ; f \in V\} \subset W
$$

is called the image of $T$ and the set

$$
\operatorname{Ker}(T)=\{f \in V ; T(f)=0\} \subset V
$$

is called the kernel of $T$.
If the image of $T: V \rightarrow W$ is finite dimensional then $\operatorname{rank}$ of $T$ is $\operatorname{rank}(T)=\operatorname{dim}(\operatorname{Im}(T))$ and the nullity of $T$ is nullity $(T)=\operatorname{dim}(\operatorname{Ker}(T))$ and we have $\operatorname{dim}(V)=\operatorname{rank}(T)+\operatorname{nullity}(T)$.
$T$ is called onto if $\operatorname{Im}(T)=W$.
$T$ is called one-to-one if $T(f)=T(g)$ implies that $f=g$.
$T$ is called invertible if $T$ is onto and $T$ is one-to-one.
An invertible linear transformation $T$ is called an isomorphism.
We say that $V$ and $W$ are isomorphic if there is an isomorphism from $V$ to $W$.
In that case $T^{-1}$ is linear and invertible so it is an isomorphism from $W$ to $V$.
If $T$ is an isomorphism from $V$ and $W$ and $S$ is an isomorphism from $U$ and $V$
then $T \circ S$ is an isomorphism from $U$ and $W$.
Th If $T$ is an isomorphism if and only if $\operatorname{Im}(T)=W$ and $\operatorname{Ker}(T)=\{0\}$.
Pf If $T(f)=T(g)$ then $T(f-g)=T(f)-T(g)=0$, i.e. $f-g \in \operatorname{Ker}(T)$.
Hence if $\operatorname{Ker}(T)=\{0\}$ it follows that $T$ is one-to-one and hence an isomorphism.
On the other hand if $T$ is invertible then $T^{-1}(T(f))=f$ so $T(f)=0$ implies that $f=0$.
If $\mathcal{B}=\left(f_{1}, \ldots, f_{n}\right)$ is a basis then the coordinate transformation $f \rightarrow[f]_{\mathcal{B}}$ is an isomorphism:
$f=c_{1} f_{1}+\cdots+c_{n} f_{n} \quad \rightarrow \quad[f]_{\mathcal{B}}=\left[\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right]$
Ex Consider the space $\mathbf{R}^{2 \times 2}$ matrices $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.
A basis $\mathcal{B}$ is given by the form matrices $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$ and $\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$ since we can write $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=a\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]+b\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]+c\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]+d\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$.
In terms of this basis the coordinate map is $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \rightarrow\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]$

We will consider the linear transformation which is taking the derivative $T(f)=D(f)=f^{\prime}$ from $C^{\infty} \rightarrow C^{\infty}$. (Here $C^{\infty}$ are the infinitely differentiable functions.)

Ex Is $D$ an isomorphism from $P_{3}$ to $P_{3}$ ? (Here $P_{3}$ are the polynomials of degree $\leq 3$.) i.e. $D\left(a+b x+c x^{2}+d x^{3}\right)=b+2 c x+3 d x^{2}$.
Sol No because it is not onto, since e.g. $x^{3}$ is not in the image.
Ex Is $D$ an isomorphism from $P_{3}$ to $P_{2}$ ?
Sol No since the constants $a$ are in the kernel.
Ex Let $P_{3}^{0}=\left\{f \in P_{3} ; f(0)=0\right\}$, i.e. polynomials of the form $b x+c x^{2}+d x^{3}$.
Then $P_{3}^{0}$ is a vector space since it is a subspace of $P_{3}$ that is closed under addition and scalar multiplication. Is $D: P_{3}^{0} \rightarrow P_{2}$ an isomorphism.
Sol It is onto and the constants are no longer on the kernel since an element of $P_{3}^{0}$ is a polynomial of the form $b x+c x^{2}+d x^{3}$ without the constant.
Moreover, the inverse to $D: P_{3}^{0} \rightarrow P_{2}$ is $D^{-1}(f)(x)=\int_{0}^{x} f(t) d t$.
Ex Is $L(f)=\left[\begin{array}{l}f(1) \\ f(2) \\ f(3)\end{array}\right]$ an isomorphism from $P_{2}$ to $\mathbf{R}^{3}$ ?
Sol If $f$ is in the kernel then $f(x)=c(x-1)(x-2)$ but if $f(3)=2 c=0$ as well then $c=0$ so $f=0$ identically. Hence $\operatorname{Ker}(L)=\{0\}$ so nullity $(L)=0$. Since dimension of $P_{2}$ is 3 we have that nullity $(L)+\operatorname{rank}(L)=3$ it follows that $\operatorname{rank}(L)=3$, which is the same as the dimension of $\mathbf{R}^{3}$. Therefore $\operatorname{Im}(T)=\mathbf{R}^{3}$ (since it is a subspace and the only 3 dimensional subspace of $\mathbf{R}^{3}$ is $\mathbf{R}^{3}$ itself) so it is an isomorphism.

## Summary and Questions

Let $V$ and $W$ be two vector spaces. Let $T$ be a transformation from $V$, called the domain, to $W$, called the target space. Then $T$ is called linear if

$$
T(\mathbf{x}+\mathbf{z})=T(\mathbf{x})+T(\mathbf{z}), \quad \text { and } \quad T(\lambda \mathbf{x})=\lambda T(\mathbf{x})
$$

The set

$$
\operatorname{Im}(T)=\{T(f) ; f \in V\} \subset W
$$

is called the image of $T$ and the set

$$
\operatorname{Ker}(T)=\{f \in V ; T(f)=0\} \subset V
$$

is called the kernel of $T$.
If the image of $T: V \rightarrow W$ is finite dimensional then $\operatorname{rank}$ of $T$ is $\operatorname{rank}(T)=\operatorname{dim}(\operatorname{Im}(T))$ and the nullity of $T$ is nullity $(T)=\operatorname{dim}(\operatorname{Ker}(T))$ and we have $\operatorname{dim}(V)=\operatorname{rank}(T)+\operatorname{nullity}(T)$.
$T$ is called onto if $\operatorname{Im}(T)=W$.
$T$ is called one-to-one if $T(f)=T(g)$ implies that $f=g$.
$T$ is called invertible if $T$ is onto and $T$ is one-to-one.
An invertible linear transformation $T$ is called an isomorphism.
We say that $V$ and $W$ are isomorphic if there is an isomorphism from $V$ to $W$.
Th If $T$ is an isomorphism if and only if $\operatorname{Im}(T)=W$ and $\operatorname{Ker}(T)=\{0\}$.
Pf If $T(f)=T(g)$ then $T(f-g)=T(f)-T(g)=0$, i.e. $f-g \in \operatorname{Ker}(T)$.
Hence if $\operatorname{Ker}(T)=\{0\}$ it follows that $T$ is one-to-one and hence an isomorphism.
On the other hand if $T$ is invertible then $T^{-1}(T(f))=f$ so $T(f)=0$ implies that $f=0$.
We will consider the linear transformation which is taking the derivative $T(f)=D(f)=f^{\prime}$ from $C^{\infty} \rightarrow C^{\infty}$. (Here $C^{\infty}$ are the infinitely differentiable functions.)

Ex Is $D$ an isomorphism from $P_{3}$ to $P_{3}$ ? (Here $P_{3}$ are the polynomials of degree $\leq 3$.) i.e. $D\left(a+b x+c x^{2}+d x^{3}\right)=b+2 c x+3 d x^{2}$.
Sol No because it is not onto, since e.g. $x^{3}$ is not in the image.
Ex Is $D$ an isomorphism from $P_{3}$ to $P_{2}$ ?
Sol No since the constants $a$ are in the kernel.
Ex Let $P_{3}^{0}=\left\{f \in P_{3} ; f(0)=0\right\}$, i.e. polynomials of the form $b x+c x^{2}+d x^{3}$.
Then $P_{3}^{0}$ is a vector space since it is a subspace of $P_{3}$ that is closed under addition and scalar multiplication. Is $D: P_{3}^{0} \rightarrow P_{2}$ an isomorphism.
Sol It is onto and the constants are no longer on the kernel since an element of $P_{3}^{0}$ is a polynomial of the form $b x+c x^{2}+d x^{3}$ without the constant.
Moreover, the inverse to $D: P_{3}^{0} \rightarrow P_{2}$ is $D^{-1}(f)(x)=\int_{0}^{x} f(t) d t$.

