13. Lecture 13: 4.2 Isomorphisms

Let V and W be two vector spaces. Let T be a transformation from V, called the **domain**, to W, called the **target space**. Then T is called **linear** if

$$T(\mathbf{x} + \mathbf{z}) = T(\mathbf{x}) + T(\mathbf{z}),$$
 and $T(\lambda \mathbf{x}) = \lambda T(\mathbf{x}).$

The set

 $\operatorname{Im}(T) = \{T(f); f \in V\} \subset W$

is called the **image** of T and the set

$$\operatorname{Ker}(T) = \{ f \in V; \, T(f) = 0 \} \subset V$$

is called the **kernel** of T.

If the image of $T: V \to W$ is finite dimensional then **rank** of T is $\operatorname{rank}(T) = \dim(\operatorname{Im}(T))$ and the **nullity** of T is $\operatorname{nullity}(T) = \dim(\operatorname{Ker}(T))$ and we have $\dim(V) = \operatorname{rank}(T) + \operatorname{nullity}(T)$.

T is called **onto** if Im(T) = W. T is called **one-to-one** if T(f) = T(g) implies that f = g. T is called **invertible** if T is onto and T is one-to-one.

An invertible linear transformation T is called an **isomorphism**. We say that V and W are **isomorphic** if there is an isomorphism from V to W. In that case T^{-1} is linear and invertible so it is an isomorphism from W to V. If T is an isomorphism from V and W and S is an isomorphism from U and Vthen $T \circ S$ is an isomorphism from U and W.

Th If T is an isomorphism if and only if Im(T) = W and $\text{Ker}(T) = \{0\}$. Pf If T(f) = T(g) then T(f - g) = T(f) - T(g) = 0, i.e. $f - g \in \text{Ker}(T)$. Hence if $\text{Ker}(T) = \{0\}$ it follows that T is one-to-one and hence an isomorphism. On the other hand if T is invertible then $T^{-1}(T(f)) = f$ so T(f) = 0 implies that f = 0.

If $\mathcal{B} = (f_1, \ldots, f_n)$ is a basis then the coordinate transformation $f \to [f]_{\mathcal{B}}$ is an isomorphism:

 $f = c_1 f_1 + \dots + c_n f_n \quad \rightarrow \quad [f]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$ Ex Consider the space $\mathbb{R}^{2 \times 2}$ matrices $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$. A basis \mathcal{B} is given by the form matrices $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ since we can write $\begin{bmatrix} a & b \\ c & d \end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + d \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$. In terms of this basis the coordinate map is $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \rightarrow \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$ We will consider the linear transformation which is taking the derivative T(f) = D(f) = f' from $C^{\infty} \to C^{\infty}$. (Here C^{∞} are the infinitely differentiable functions.)

Ex Is *D* an isomorphism from P_3 to P_3 ? (Here P_3 are the polynomials of degree ≤ 3 .) i.e. $D(a + bx + cx^2 + dx^3) = b + 2cx + 3dx^2$.

Sol No because it is not onto, since e.g. x^3 is not in the image.

Ex Is D an isomorphism from P_3 to P_2 ? **Sol** No since the constants a are in the kernel.

Ex Let $P_3^0 = \{f \in P_3; f(0) = 0\}$, i.e. polynomials of the form $bx + cx^2 + dx^3$. Then P_3^0 is a vector space since it is a subspace of P_3 that is closed under addition and scalar multiplication. Is $D : P_3^0 \to P_2$ an isomorphism.

Sol It is onto and the constants are no longer on the kernel since an element of P_3^0 is a polynomial of the form $bx + cx^2 + dx^3$ without the constant.

Moreover, the inverse to $D: P_3^0 \to P_2$ is $D^{-1}(f)(x) = \int_0^x f(t) dt$.

Ex Is $L(f) = \begin{bmatrix} f(1) \\ f(2) \\ f(3) \end{bmatrix}$ an isomorphism from P_2 to \mathbb{R}^3 ?

Sol If f is in the kernel then f(x) = c(x-1)(x-2) but if f(3) = 2c = 0 as well then c = 0so f = 0 identically. Hence Ker $(L) = \{0\}$ so nullity(L) = 0. Since dimension of P_2 is 3 we have that nullity $(L) + \operatorname{rank}(L) = 3$ it follows that $\operatorname{rank}(L) = 3$, which is the same as the dimension of \mathbf{R}^3 . Therefore Im $(T) = \mathbf{R}^3$ (since it is a subspace and the only 3 dimensional subspace of \mathbf{R}^3 is \mathbf{R}^3 itself) so it is an isomorphism.

SUMMARY AND QUESTIONS

Let V and W be two vector spaces. Let T be a transformation from V, called the **domain**, to W, called the **target space**. Then T is called **linear** if

$$T(\mathbf{x} + \mathbf{z}) = T(\mathbf{x}) + T(\mathbf{z}),$$
 and $T(\lambda \mathbf{x}) = \lambda T(\mathbf{x}).$

The set

$$\operatorname{Im}(T) = \{T(f); f \in V\} \subset W$$

is called the **image** of T and the set

$$\operatorname{Ker}(T) = \{ f \in V; \, T(f) = 0 \} \subset V$$

is called the **kernel** of T.

If the image of $T: V \to W$ is finite dimensional then **rank** of T is $\operatorname{rank}(T) = \dim(\operatorname{Im}(T))$ and the **nullity** of T is $\operatorname{nullity}(T) = \dim(\operatorname{Ker}(T))$ and we have $\dim(V) = \operatorname{rank}(T) + \operatorname{nullity}(T)$.

T is called **onto** if Im(T) = W. T is called **one-to-one** if T(f) = T(g) implies that f = g. T is called **invertible** if T is onto and T is one-to-one.

An invertible linear transformation T is called an **isomorphism**. We say that V and W are **isomorphic** if there is an isomorphism from V to W.

Th If T is an isomorphism if and only if Im(T) = W and $\text{Ker}(T) = \{0\}$. **Pf** If T(f) = T(g) then T(f - g) = T(f) - T(g) = 0, i.e. $f - g \in \text{Ker}(T)$. Hence if $\text{Ker}(T) = \{0\}$ it follows that T is one-to-one and hence an isomorphism. On the other hand if T is invertible then $T^{-1}(T(f)) = f$ so T(f) = 0 implies that f = 0.

We will consider the linear transformation which is taking the derivative T(f) = D(f) = f' from $C^{\infty} \to C^{\infty}$. (Here C^{∞} are the infinitely differentiable functions.)

Ex Is *D* an isomorphism from P_3 to P_3 ? (Here P_3 are the polynomials of degree ≤ 3 .) i.e. $D(a + bx + cx^2 + dx^3) = b + 2cx + 3dx^2$. **Sol** No because it is not onto, since e.g. x^3 is not in the image.

Ex Is D an isomorphism from P_3 to P_2 ? **Sol** No since the constants a are in the kernel.

Ex Let $P_3^0 = \{f \in P_3; f(0) = 0\}$, i.e. polynomials of the form $bx + cx^2 + dx^3$. Then P_3^0 is a vector space since it is a subspace of P_3 that is closed under addition and scalar multiplication. Is $D : P_3^0 \to P_2$ an isomorphism.

Sol It is onto and the constants are no longer on the kernel since an element of P_3^0 is a polynomial of the form $bx + cx^2 + dx^3$ without the constant.

Moreover, the inverse to $D: P_3^0 \to P_2$ is $D^{-1}(f)(x) = \int_0^x f(t) dt$.