14. Lecture 14: 4.3 Coordinate matrix of a linear transformation

Suppose $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ is a basis for a vector space (also called a linear space) V. The \mathcal{B}-coordinates of \mathbf{x} are the weights c_{1}, \cdots, c_{n} such that

$$
\mathbf{x}=c_{1} \mathbf{b}_{1}+\cdots+c_{n} \mathbf{b}_{n}, \quad \text { where } \quad[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right] .
$$

is called the \mathcal{B}-coordinate vector of \mathbf{x}. The coordinate map taking \mathbf{x} is to $[\mathbf{x}]_{\mathcal{B}}$ is denoted

$$
L_{\mathcal{B}}: \mathbf{x} \rightarrow[\mathbf{x}]_{\mathcal{B}} .
$$

Ex Standard basis for the polynomials of degree 2 or less, \mathbf{P}_{2} is $\left\{1, t, t^{2}\right\}$. We can write $\left[a+b t+c t^{2}\right]_{\mathcal{B}}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$. All vector space operations in \mathbf{P}_{2} corresponds to operations in \mathbf{R}^{3}, e.g. adding two polynomials $\left(-1+2 t-3 t^{2}\right)+\left(2+3 t+5 t^{2}\right)=1+5 t+2 t^{2}$ corresponds to adding their coordinate vectors: $\left[\begin{array}{c}-1 \\ 2 \\ -3\end{array}\right]+\left[\begin{array}{l}2 \\ 3 \\ 5\end{array}\right]=\left[\begin{array}{l}1 \\ 5 \\ 2\end{array}\right]$.

Let T be a linear transformation from $V \rightarrow V$. Suppose $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ is a basis for V. Then there is a linear transformation, with matrix B, taking $[\mathbf{x}]_{\mathcal{B}}$ to $[T(\mathbf{x})]_{\mathcal{B}}:$ n

$$
\begin{equation*}
[T(\mathbf{x})]_{\mathcal{B}}=B[\mathbf{x}]_{\mathcal{B}}, \tag{14.1}
\end{equation*}
$$

i.e. if we express \mathbf{x} and $T(\mathbf{x})$ in the basis then the linear transformation of their coefficients;

$$
\begin{array}{r}
\mathbf{x}=c_{1} \mathbf{b}_{1}+\cdots+c_{n} \mathbf{b}_{n} \xrightarrow{T} T(\mathbf{x})=d_{1} \mathbf{b}_{1}+\cdots+d_{n} \mathbf{b}_{n} \\
L_{\mathcal{B}} \\
\left.\downarrow \begin{array}{l}
L_{\mathcal{B}} \\
{[\mathbf{x}]_{\mathcal{B}}} \\
=
\end{array} \begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right] \xrightarrow{B} \quad[T(\mathbf{x})]_{\mathcal{B}}=\left[\begin{array}{c}
d_{1} \\
\vdots \\
d_{n}
\end{array}\right]
\end{array}
$$

has matrix B. The matrix B is calculated from the above commutative diagram;

$$
B=L_{\mathcal{B}} T L_{\mathcal{B}}^{-1}
$$

Substituting \mathbf{b}_{i} into (14.1) we see that

$$
B=\left[\begin{array}{cc}
\mid & \mid \\
{\left[T\left(\mathbf{b}_{1}\right)\right]_{\mathcal{B}}\left[T\left(\mathbf{b}_{2}\right)\right]_{\mathcal{B}} \cdots} & \mid \\
\mid & \mid
\end{array}\right]
$$

Ex Let $T=D$ be the derivative map acting on polynomials of degree ≤ 2, with basis $\mathbf{b}_{1}=1, \mathbf{b}_{2}=t$ and $\mathbf{b}_{3}=t^{2}$. We have $T(1)=0, T(t)=1$ and $T\left(t^{2}\right)=2 t$ so $\left[T\left(\mathbf{b}_{1}\right)\right]_{\mathcal{B}}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right],\left[T\left(\mathbf{b}_{2}\right)\right]_{\mathcal{B}}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ and $\left[T\left(\mathbf{b}_{3}\right)\right]_{\mathcal{B}}=\left[\begin{array}{l}0 \\ 2 \\ 0\end{array}\right]$ so $B=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0\end{array}\right]$.

Change of Basis

Ex Suppose we have two basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ and $\mathcal{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}\right\}$ that are related by

$$
\begin{equation*}
\mathbf{b}_{1}=3 \mathbf{c}_{1}+5 \mathbf{c}_{2}, \quad \mathbf{b}_{2}=\mathbf{c}_{1}+2 \mathbf{c}_{2} \tag{14.2}
\end{equation*}
$$

If $[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{c}1 \\ -2\end{array}\right]$, i.e. $\mathbf{x}=\mathbf{b}_{1}-2 \mathbf{b}_{2}$, find $[\mathbf{x}]_{\mathcal{C}}=\left[\begin{array}{l}d_{1} \\ d_{2}\end{array}\right]$, such that $\mathbf{x}=d_{1} \mathbf{c}_{1}+d_{2} \mathbf{c}_{2}$.
Sol By 14.2 $\left[\mathbf{b}_{1}\right]_{\mathcal{C}}=\left[\begin{array}{l}3 \\ 5\end{array}\right]$ and $\left[\mathbf{b}_{2}\right]_{\mathcal{C}}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and hence

$$
[\mathbf{x}]_{\mathcal{C}}=\left[\mathbf{b}_{1}-2 \mathbf{b}_{2}\right]_{\mathcal{C}}=\left[\mathbf{b}_{1}\right]_{\mathcal{C}}-2\left[\mathbf{b}_{2}\right]_{\mathcal{C}}=\left[\left[\mathbf{b}_{1}\right]_{\mathcal{C}}\left[\mathbf{b}_{2}\right]_{\mathcal{C}}\right]\left[\begin{array}{c}
1 \\
-2
\end{array}\right]=\left[\begin{array}{ll}
3 & 1 \\
5 & 2
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The same argument as in the example proves the following:
Th Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ and $\mathcal{C}=\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{n}\right\}$ be two basis for a vector space V. Then there is a unique matrix $S_{\mathcal{B} \rightarrow \mathcal{C}}$ such that

$$
[\mathbf{x}]_{\mathcal{C}}=S_{\mathcal{B} \rightarrow \mathcal{C}}[\mathbf{x}]_{\mathcal{B}}
$$

The columns of $S_{\mathcal{B} \rightarrow \mathcal{C}}$ are the \mathcal{C}-coordinate vectors of the vectors in the basis \mathcal{B} :

$$
S_{\mathcal{B} \rightarrow \mathcal{C}}=\left[\begin{array}{lll}
{\left[\mathbf{b}_{1}\right]_{\mathcal{C}}} & \cdots & \left.\left[\mathbf{b}_{n}\right]_{\mathcal{C}}\right]
\end{array}\right]
$$

The matrix $S_{\mathcal{B} \rightarrow \mathcal{C}}$ is called the change-of-coordinates matrix from \mathcal{B} to \mathcal{C}.
If \mathcal{D} is another basis then changing coordinates from \mathcal{B} to \mathcal{D} is the same as changing coordinates first from \mathcal{B} to \mathcal{C} and then from \mathcal{C} to \mathcal{D}, so $[\mathbf{x}]_{\mathcal{D}}=S_{\mathcal{C} \rightarrow \mathcal{D}}[\mathbf{x}]_{\mathcal{C}}=S_{\mathcal{C} \rightarrow \mathcal{D}} S_{\mathcal{B} \rightarrow \mathcal{C}}[\mathbf{x}]_{\mathcal{B}}$ i.e.

$$
S_{\mathcal{B} \rightarrow \mathcal{D}}=S_{\mathcal{C} \rightarrow \mathcal{D}} S_{\mathcal{B} \rightarrow \mathcal{C}}
$$

Since $S_{\mathcal{B} \rightarrow \mathcal{B}}=S_{\mathcal{B} \rightarrow \mathcal{B}} S_{\mathcal{C} \rightarrow \mathcal{B}}$ is the identity transformation the inverse change of variables satisfies

$$
S_{\mathcal{B} \rightarrow \mathcal{C}}=S_{\mathcal{C} \rightarrow \mathcal{B}}^{-1}
$$

If $\mathcal{E}=\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$ is the standard basis in \mathbf{R}^{n} and $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ another then $\left[\mathbf{b}_{i}\right]_{\mathcal{E}}=\mathbf{b}_{i}$ so

$$
S_{\mathcal{B} \rightarrow \mathcal{E}}=\left[\mathbf{b}_{1} \cdots \mathbf{b}_{n}\right]
$$

It follows that

$$
S_{\mathcal{B} \rightarrow \mathcal{C}}=S_{\mathcal{E} \rightarrow \mathcal{C}} S_{\mathcal{B} \rightarrow \mathcal{E}}=S_{\mathcal{C} \rightarrow \mathcal{E}}^{-1} S_{\mathcal{B} \rightarrow \mathcal{E}}
$$

In other words we can express a vector in the there different coordinate systems

$$
z_{1} \mathbf{c}_{1}+\cdots+z_{n} \mathbf{c}_{n}=y_{1} \mathbf{b}_{1}+\cdots+y_{n} \mathbf{b}_{n}=x_{1} \mathbf{e}_{1}+\cdots+x_{n} \mathbf{e}_{n}
$$

and the matrix for the transformation $[\mathbf{x}]_{\mathcal{B}}=\left(y_{1}, \ldots, y_{n}\right) \rightarrow[\mathbf{x}]_{\mathcal{C}}=\left(z_{1}, \ldots, z_{n}\right)$ can be obtained by first going $\left(y_{1}, \ldots, y_{n}\right) \rightarrow\left(x_{1}, \ldots, x_{n}\right)$ and then $\left(x_{1}, \ldots, x_{n}\right) \rightarrow\left(z_{1}, \ldots, z_{n}\right)$. The matrix for the last transformation is easiest obtained as the inverse of the matrix for $\left(z_{1}, \ldots, z_{n}\right) \rightarrow\left(x_{1}, \ldots, x_{n}\right)$.
Ex Let $\mathcal{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}\right\}$ be the basis $\mathbf{c}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right], \mathbf{c}_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$, and $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ be $\mathbf{b}_{1}=\left[\begin{array}{l}3 \\ 0\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{l}4 \\ 5\end{array}\right]$.
Find the change of coordinate matrix from the coordinates in the \mathcal{B} basis to the coordinates in the \mathcal{C} basis.
Sol $\quad S_{\mathcal{B} \rightarrow \mathcal{C}}=S_{\mathcal{C} \rightarrow \mathcal{E}}^{-1} S_{\mathcal{B} \rightarrow \mathcal{E}}=\left[\begin{array}{cc}1 & -1 \\ 2 & 1\end{array}\right]^{-1}\left[\begin{array}{ll}3 & 4 \\ 0 & 5\end{array}\right]=\frac{1}{3}\left[\begin{array}{cc}1 & 1 \\ -2 & 1\end{array}\right]\left[\begin{array}{ll}3 & 4 \\ 0 & 5\end{array}\right]=\frac{1}{3}\left[\begin{array}{cc}3 & 9 \\ -6 & -3\end{array}\right]=\left[\begin{array}{cc}1 & 3 \\ -2 & -1\end{array}\right]$

Examples of changing coordinates in vector spaces

$\operatorname{Ex}(\mathrm{a}) T: P_{2} \rightarrow P_{2}$ be the linear transformation defined by $T(f)=f+f^{\prime \prime}$. Let $\mathcal{S}=\left(1, x, x^{2}\right)$ be the standard basis for P_{2}. Find the \mathcal{S}-matrix A for T.
(b) Let $\mathcal{B}=\left(1+x, x+x^{2}, 1+x^{2}\right)$ be another basis for P_{2}. Let B be the \mathcal{B}-matrix for the linear transformation T. Find the invertible matrix S such that $B=S^{-1} A S$.
Sol (a) T maps

Since
we have

$$
\begin{aligned}
T(1)=1 & =1 \cdot 1+0 \cdot x+0 \cdot x^{2} \\
T(x)=x & =0 \cdot 1+1: x+0 \cdot x^{2}, \\
T\left(x^{2}\right)=x^{2}+2 & =2 \cdot 1+0 \cdot x+1 \cdot x^{2}
\end{aligned}
$$

$$
A\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad A\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad A\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right], \quad \text { so } \quad A=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

(b) Next we want to find the expression for T in the new basis

$$
\begin{array}{ccc}
a_{1} \cdot(1+x)+a_{2} \cdot\left(x+x^{2}\right)+a_{3} \cdot\left(1+x^{2}\right) & \xrightarrow{T} b_{1} \cdot(1+x)+b_{2} \cdot\left(x+x^{2}\right)+b_{3} \cdot\left(1+x^{2}\right) \\
\\
{\left[\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]} & \xrightarrow{\text { multiply by } B} & {\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]}
\end{array}
$$

Since we already know the matrix for B in the standard coordinates the easiest way to get B is to change coordinates $\quad a_{1} \cdot(1+x)+a_{2} \cdot\left(x+x^{2}\right)+a_{3} \cdot\left(1+x^{2}\right)=c_{1} \cdot 1+c_{2} \cdot x+c_{3} \cdot x^{2}$
Since the new coordinates already are expressed in terms of the old ones, the easiest way is to get the matrix S from the new coordinates to the old ones $\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right]=S\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right]$.
We get $S\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], \quad S\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 1\end{array}\right], \quad S\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right], \quad$ so $\left.\quad \begin{array}{l}\text { so }\end{array}\right]$
Multiplication B corresponds to $\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right] \xrightarrow{\text { multiply by } S}\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right] \xrightarrow{\text { multiply by } A}\left[\begin{array}{l}d_{1} \\ d_{2} \\ d_{3}\end{array}\right] \xrightarrow{\text { multiply by } S^{-1}}\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$ so $B=S^{-1} A S=\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]^{-1}\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]=\ldots$. For more info see Ex 5 , Ex 8 in $\sec 4.3$.

Also look at Ex 7 in sec 4.3 about changing basis in a plane.

Summary and Questions

Let T be a linear transformation from $V \rightarrow V$. Suppose $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ is a basis for V. Then there is a linear transformation, with matrix B, taking $[\mathbf{x}]_{\mathcal{B}}$ to $[T(\mathbf{x})]_{\mathcal{B}}$

$$
[T(\mathbf{x})]_{\mathcal{B}}=B[\mathbf{x}]_{\mathcal{B}},
$$

i.e. if we express \mathbf{x} and $T(\mathbf{x})$ in the basis then the linear transformation of their coefficients;

$$
\begin{array}{r}
\mathbf{x}=c_{1} \mathbf{b}_{1}+\cdots+c_{n} \mathbf{b}_{n} \xrightarrow{T} T(\mathbf{x})=d_{1} \mathbf{b}_{1}+\cdots+d_{n} \mathbf{b}_{n} \\
L_{\mathcal{B}} \downarrow \\
{[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right] \xrightarrow{L_{\mathcal{B}}}}
\end{array}
$$

has matrix B, i.e.

$$
B=L_{\mathcal{B}} T L_{\mathcal{B}}^{-1}
$$

Substituting \mathbf{b}_{i} into (14.1) we see that

$$
B=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
{\left[T\left(\mathbf{b}_{1}\right)\right]_{\mathcal{B}}\left[T\left(\mathbf{b}_{2}\right)\right]_{\mathcal{B}} \cdots} & {\left[T\left(\mathbf{b}_{n}\right)\right]_{\mathcal{B}}} \\
\mid & \mid & \mid
\end{array}\right]
$$

Ex The map $T=D$ the derivative acting on polynomials of degree ≤ 2 with the basis $\mathbf{b}_{1}=1, \mathbf{b}_{2}=x$ and $\mathbf{b}_{3}=x^{2}$. then $T\left(a+b x+c x^{2}\right)=b+2 c x$ so the B matrix is $B=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0\end{array}\right]$
Th Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ and $\mathcal{C}=\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{n}\right\}$ be two basis for a vector space V. Then there is a unique matrix $S_{\mathcal{B} \rightarrow \mathcal{C}}$ such that

$$
[\mathbf{x}]_{\mathcal{C}}=S_{\mathcal{B} \rightarrow \mathcal{C}}[\mathbf{x}]_{\mathcal{B}}
$$

The columns of $S_{\mathcal{B} \rightarrow \mathcal{C}}$ are the \mathcal{C}-coordinate vectors of the vectors in the basis \mathcal{B} :

$$
S_{\mathcal{B} \rightarrow \mathcal{C}}=\left[\begin{array}{lll}
{\left[\mathbf{b}_{1}\right]_{\mathcal{C}}} & \cdots & {\left[\mathbf{b}_{n}\right]_{\mathcal{C}}}
\end{array}\right]
$$

The matrix $S_{\mathcal{B} \rightarrow \mathcal{C}}$ is called the change-of-coordinates matrix from \mathcal{B} to \mathcal{C}.
Ex Suppose we have two basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ and $\mathcal{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}\right\}$ that are related by

$$
\mathbf{b}_{1}=3 \mathbf{c}_{1}+5 \mathbf{c}_{2}, \quad \mathbf{b}_{2}=\mathbf{c}_{1}+2 \mathbf{c}_{2}
$$

If $[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{c}1 \\ -2\end{array}\right]$, i.e. $\mathbf{x}=\mathbf{b}_{1}-2 \mathbf{b}_{2}$, find $[\mathbf{x}]_{\mathcal{C}}$, i.e. $\left(y_{1}, y_{2}\right)$ such that $\mathbf{x}=y_{1} \mathbf{c}_{1}+y_{2} \mathbf{c}_{2}$.
Sol

$$
\begin{aligned}
& \quad[\mathbf{x}]_{\mathcal{C}}=\left[\mathbf{b}_{1}-2 \mathbf{b}_{2}\right]_{\mathcal{C}}=\left[\mathbf{b}_{1}\right]_{\mathcal{C}}-2\left[\mathbf{b}_{2}\right]_{\mathcal{C}}=\left[\left[\mathbf{b}_{1}\right]_{\mathcal{C}}\left[\mathbf{b}_{2}\right]_{\mathcal{C}}\right]\left[\begin{array}{c}
1 \\
-2
\end{array}\right]=\left[\begin{array}{ll}
3 & 1 \\
5 & 2
\end{array}\right]\left[\begin{array}{c}
1 \\
-2
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& \text { since }\left[\mathbf{b}_{1}\right]_{\mathcal{C}}=\left[\begin{array}{l}
3 \\
5
\end{array}\right] \text { and }\left[\mathbf{b}_{2}\right]_{\mathcal{C}}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] .
\end{aligned}
$$

