15. Lecture 15: 5.1 Orthonormal Bases and Orthogonal Projection

The **dot product** between two vectors $\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$ and $\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$ is $\mathbf{x} \cdot \mathbf{y} = x_1 y_1 + \dots + x_n y_n$. The **length** of the vector \mathbf{x} is $\|\mathbf{x}\| = \sqrt{\mathbf{x} \cdot \mathbf{x}} = \sqrt{x_1^2 + \dots + x_n^2}$. Two vectors \mathbf{x} and \mathbf{y} are said to be **orthogonal** if $\mathbf{x} \cdot \mathbf{y} = 0$. If θ is the angle between \mathbf{x} and \mathbf{y} then $\mathbf{x} \cdot \mathbf{y} = \|\mathbf{x}\| \|\mathbf{y}\| \cos \theta$. **Cauchy-Schwarz inequality:** $\|\mathbf{x} \cdot \mathbf{y}\| \le \|\mathbf{x}\| \|\mathbf{y}\|$. The **distance** between \mathbf{x} and \mathbf{y} is $\|\mathbf{y} - \mathbf{x}\|$. The **Pythagorean law:** says that $\|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$ if and only if $\mathbf{x} \cdot \mathbf{y} = 0$. This follows since $\|\mathbf{x} + \mathbf{y}\|^2 = (\mathbf{x} + \mathbf{y}) \cdot (\mathbf{x} + \mathbf{y}) = \mathbf{x} \cdot \mathbf{x} + \mathbf{y} \cdot \mathbf{y} + \mathbf{x} \cdot \mathbf{y} + \mathbf{y} \cdot \mathbf{x} = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 + 2\mathbf{x} \cdot \mathbf{y}$.

z is said to be **orthogonal to** a subspace W if it is orthogonal to every vector in W. The set of all vectors **z** that are orthogonal to a subspace $W \subset \mathbf{R}^n$ is called the **orthogonal** complement of W and is denoted by W^{\perp} .

$$W^{\perp} = \{ \mathbf{z} \in \mathbf{R}^n; \, \mathbf{z} \cdot \mathbf{y} = 0, \text{ for every } \mathbf{y} \in W \}$$

Ex If W is plane through the origin in \mathbb{R}^3 and L is the line through the origin perpendicular to W, then $W^{\perp} = L$. In fact, clearly $L \subset W^{\perp}$ since L is perpendicular to W and any vector not in L is not perpendicular to W. Similarly $L^{\perp} = W$.

Ex If $V = \{ \mathbf{x} \in \mathbf{R}^3 ; \mathbf{x} = \alpha(1, 1, 1), \text{ for some } \alpha \}$ then $V^{\perp} = \{ \mathbf{y} \in \mathbf{R}^3 ; \alpha(1, 1, 1) \cdot \mathbf{y} = 0, \text{ for every } \alpha \} = \{ \mathbf{y} \in \mathbf{R}^3 ; y_1 + y_2 + y_3 = 0 \}.$

(1) If $W = \text{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ then $\mathbf{z} \in W^{\perp}$ if and only if $\mathbf{z} \cdot \mathbf{v}_1 = \dots = \mathbf{z} \cdot \mathbf{v}_k = 0$.

(2) W^{\perp} is a subspace.

(3) Every vector $\mathbf{x} \in \mathbf{R}^3$ can be uniquely written as $\mathbf{x} = \mathbf{y} + \mathbf{z}$, where $\mathbf{y} \in W$ and $\mathbf{z} \in W^{\perp}$.

ORTHOGONAL SETS

A set of vectors $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ in called an **orthogonal set** if $\mathbf{u}_i \cdot \mathbf{u}_j = 0$ when $i \neq j$.

Ex Show that $\mathbf{u}_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ is an orthogonal set? **Sol:** $\mathbf{u}_1 \cdot \mathbf{u}_2 = 1 \cdot 1 + -1 \cdot 1 + 0 \cdot 0 = 0$, $\mathbf{u}_1 \cdot \mathbf{u}_3 = 1 \cdot 0 + -1 \cdot 0 + 0 \cdot 1 = 0$, $\mathbf{u}_2 \cdot \mathbf{u}_3 = 1 \cdot 0 + 1 \cdot 0 + 0 \cdot 1 = 0$ **Th** Suppose that $S = \{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is an orthogonal set of nonzero vectors in \mathbf{R}^n and W =Span $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$. Then S is a linearly independent set and a basis for W. **Pf** Suppose that $c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \dots + c_p\mathbf{u}_p = \mathbf{0}$, then $(c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \dots + c_p\mathbf{u}_p = \mathbf{0})$

$$(c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_p \mathbf{u}_p) \cdot \mathbf{u}_1 = 0, c_1 \mathbf{u}_1 \cdot \mathbf{u}_1 + c_2 \mathbf{u}_2 \cdot \mathbf{u}_1 + \dots + c_p \mathbf{u}_p \cdot \mathbf{u}_1 = 0, c_1 \mathbf{u}_1 \cdot \mathbf{u}_1 = 0,$$

 $c_1=0$ since $\mathbf{u}_1 \cdot \mathbf{u}_1 > 0$. Similarly $c_2 = \cdots = c_p = 0$, so S is a linearly independent set. A set of vectors $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ is called an orthogonal basis if it is orthogonal and a basis.

Th If $S = {\mathbf{u}_1, \ldots, \mathbf{u}_p}$ is an orthogonal basis for a subspace W and $\mathbf{y} \in W$, then $\mathbf{x} \cdot \mathbf{u}_i$

Pf
$$\mathbf{x} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_p \mathbf{u}_p, \quad \text{where} \quad c_i = \frac{\mathbf{x} \cdot \mathbf{u}_i}{\mathbf{u}_i \cdot \mathbf{u}_i}$$

$$\mathbf{x} \cdot \mathbf{u}_{1} = (c_{1}\mathbf{u}_{1} + c_{2}\mathbf{u}_{2} + \dots + c_{p}\mathbf{u}_{p}) \cdot \mathbf{u}_{1} = c_{1}\mathbf{u}_{1} \cdot \mathbf{u}_{1} + c_{2}\mathbf{u}_{2} \cdot \mathbf{u}_{1} + \dots + c_{p}\mathbf{u}_{p} \cdot \mathbf{u}_{1} = c_{1}\mathbf{u}_{1} \cdot \mathbf{u}_{1}$$
Hence $c_{1} = \frac{\mathbf{u}_{1} \cdot \mathbf{x}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}}$ and similarly $c_{2} = \frac{\mathbf{u}_{2} \cdot \mathbf{x}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}}, \qquad c_{p} = \frac{\mathbf{u}_{p} \cdot \mathbf{x}}{\mathbf{u}_{p} \cdot \mathbf{u}_{p}}$

Ex Write $\mathbf{x} = \begin{bmatrix} 3\\7\\4 \end{bmatrix}$ as a linear combination of $\mathbf{u}_{1} = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \mathbf{u}_{2} = \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \mathbf{u}_{3} = \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}$.

Sol Since $\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\}$ is and orthogonal basis it follows from the previous theorem that $\mathbf{x} = c_{1}\mathbf{u}_{1} + c_{2}\mathbf{u}_{2} + c_{3}\mathbf{u}_{3}$, where

$$c_1 = \frac{\mathbf{u}_1 \cdot \mathbf{x}}{\mathbf{u}_1 \cdot \mathbf{u}_1} = -2, \qquad c_2 = \frac{\mathbf{u}_2 \cdot \mathbf{x}}{\mathbf{u}_2 \cdot \mathbf{u}_2} = 5, \qquad c_3 = \frac{\mathbf{u}_3 \cdot \mathbf{x}}{\mathbf{u}_3 \cdot \mathbf{u}_3} = 4$$

Hence $\mathbf{x} = -2\mathbf{u}_1 + 5\mathbf{u}_2 + 4\mathbf{u}_3$.

A set of vectors $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is called **orthonormal** if it is a orthogonal set of unit vectors i.e. $\mathbf{u}_i \cdot \mathbf{u}_j = \delta_{ij} = \begin{cases} 0, & \text{if } i \neq j \\ 1, & \text{if } i = j \end{cases}$

If $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ is an orthogonal set then we get an orthonormal set $\mathbf{u}_i = \mathbf{v}_i / ||\mathbf{v}||_i||$. An **orthonormal basis** $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ for a subspace W is a basis that is also orthonormal.

Th If $S = {\mathbf{u}_1, \dots, \mathbf{u}_p}$ is an orthonormal basis for a subspace W and $\mathbf{x} \in W$, then $\mathbf{x} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_p \mathbf{u}_p$, where $c_i = \mathbf{x} \cdot \mathbf{u}_i$

ORTHOGONAL PROJECTION

We will now calculate the **orthogonal projection** of \mathbf{x} onto \mathbf{u} . It is a vector $\mathbf{x}^{\parallel} = \alpha \mathbf{u}$ in the direction of \mathbf{u} , such that $\mathbf{x} - \mathbf{x}^{\parallel}$ is orthogonal to \mathbf{u} :

$$(\mathbf{x} - \alpha \mathbf{u}) \cdot \mathbf{v} = 0 \quad \Leftrightarrow \quad \mathbf{x} \cdot \mathbf{u} - \alpha \, \mathbf{u} \cdot \mathbf{u} = 0 \quad \Leftrightarrow \quad \alpha = \frac{\mathbf{x} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}$$

The orthogonal projection of x onto u is the vector $\mathbf{x}^{\parallel} = \frac{\mathbf{x} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}$. We can write

$$\mathbf{x} = \mathbf{x}^{\parallel} + \mathbf{x}^{\perp}$$

where \mathbf{x}^{\perp} is called the **component orthogonal to u**.

Ex Suppose that $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an orthogonal basis for \mathbf{R}^3 and let $W = \text{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$. Write $\mathbf{x} = \mathbf{x}^{\parallel} + \mathbf{x}^{\perp}$, where $\mathbf{x} \in W$ and $\mathbf{x}^{\perp} \in W^{\perp}$, i.e. \mathbf{x}^{\perp} is perpendicular to every vector in W, i.e. $\mathbf{x}^{\perp} \cdot \mathbf{u}_1 = 0 = \mathbf{x}^{\perp} \cdot \mathbf{u}_2$. Sol By a previous theorem we can write $\mathbf{x} = \frac{\mathbf{x} \cdot \mathbf{u}_1}{\mathbf{u}_1 + \frac{\mathbf{x} \cdot \mathbf{u}_2}{\mathbf{u}_2 + \frac{\mathbf{x} \cdot \mathbf{u}_3}{\mathbf{u}_3 + \frac{\mathbf{u}_3}{\mathbf{u}_3 + \frac{\mathbf{x} \cdot \mathbf{u}_3}{\mathbf{u}_3 + \frac{\mathbf{x} \cdot \mathbf{u}_3}{\mathbf{u}_3 + \frac{\mathbf{x} \cdot \mathbf{u}_3}{\mathbf{u}_3 + \frac{\mathbf{x} \cdot \mathbf{u}_3}{\mathbf{u}_3 + \frac{\mathbf{x} \cdot \mathbf{u}$

Sol By a previous theorem we can write $\mathbf{x} = \frac{\mathbf{x} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{x} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 + \frac{\mathbf{x} \cdot \mathbf{u}_3}{\mathbf{u}_3 \cdot \mathbf{u}_3} \mathbf{u}_3$ Let $\mathbf{x}^{\parallel} = \frac{\mathbf{x} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{x} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2$. Then $\mathbf{x}^{\parallel} \in W$ and $\mathbf{x}^{\perp} = \frac{\mathbf{x} \cdot \mathbf{u}_3}{\mathbf{u}_3 \cdot \mathbf{u}_3} \mathbf{u}_3$ is orthogonal to W, since $\mathbf{x}^{\perp} \cdot \mathbf{u}_1 = \mathbf{x}^{\perp} \cdot \mathbf{u}_2 = 0$.

 \mathbf{x}^{\parallel} is called the **projection of x onto** W

Ex Let
$$W = \text{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$$
, where $\mathbf{u}_1 = \begin{bmatrix} 3\\0\\1 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$, and let $\mathbf{x} = \begin{bmatrix} 0\\3\\10 \end{bmatrix}$.
Write $\mathbf{x} = \mathbf{x}^{\parallel} + \mathbf{x}^{\perp}$, where $\mathbf{x}^{\parallel} \in W$ and $\mathbf{x}^{\perp} \in W^{\perp}$.

Sol Since $\{\mathbf{u}_1, \mathbf{u}_2\}$ is an orthogonal basis it follows that

$$\mathbf{x}^{\parallel} = \frac{\mathbf{x} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} + \frac{\mathbf{x} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} = \frac{10}{10} \begin{bmatrix} 3\\0\\1\\1 \end{bmatrix} + \frac{3}{1} \begin{bmatrix} 0\\1\\0 \end{bmatrix} = \begin{bmatrix} -3\\0\\9 \end{bmatrix}$$
$$\mathbf{x}^{\perp} = \mathbf{x} - \mathbf{x}^{\parallel} = \begin{bmatrix} 0\\3\\10 \end{bmatrix} - \begin{bmatrix} -3\\0\\9 \end{bmatrix} = \begin{bmatrix} 3\\3\\1 \end{bmatrix}$$

The orthogonal decomposition theorem Let W be a subspace of \mathbb{R}^n and suppose that $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ is an orthogonal basis for W. Any $\mathbf{x} \in \mathbb{R}^n$ can be written uniquely as

$$\mathbf{x} = \mathbf{x}^{\parallel} + \mathbf{x}^{\perp},$$

where

$$\mathbf{x}^{\parallel} = rac{\mathbf{x} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \dots + rac{\mathbf{x} \cdot \mathbf{u}_p}{\mathbf{u}_p \cdot \mathbf{u}_p} \mathbf{u}_p$$

and $\mathbf{x}^{\perp} = \mathbf{x} - \mathbf{x}^{\parallel} \in W^{\perp}$, the orthogonal complement $W^{\perp} = \{ \mathbf{z} \in \mathbf{R}^n; \mathbf{z} \cdot \mathbf{u}_1 = 0, \dots, \mathbf{z} \cdot \mathbf{u}_p = 0 \}$. $\mathbf{x}^{\parallel} = \operatorname{proj}_W \mathbf{x}$ is called the **orthogonal projection of x onto** W.

The Suppose that $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ is an orthonormal basis for W, i.e. $\mathbf{u}_i \cdot \mathbf{u}_j = \delta_{ij}$. Then proj_W $\mathbf{x} = (\mathbf{x} \cdot \mathbf{u}_1)\mathbf{u}_1 + \cdots + (\mathbf{x} \cdot \mathbf{u}_p)\mathbf{u}_p$

SUMMARY

The **dot product** between two vectors $\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$ and $\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$ is $\mathbf{x} \cdot \mathbf{y} = x_1 y_1 + \dots + x_n y_n$. The **length** of the vector \mathbf{x} is $\|\mathbf{x}\| = \sqrt{\mathbf{x} \cdot \mathbf{x}} = \sqrt{x_1^2 + \dots + x_n^2}$. \mathbf{x} and \mathbf{y} are said to be **orthogonal** if $\mathbf{x} \cdot \mathbf{y} = 0$.

A set of vectors $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ in called an **orthogonal set** if $\mathbf{u}_i \cdot \mathbf{u}_j = 0$ when $i \neq j$.

Th An orthogonal set of nonzero vectors is linearly independent. **Pf** We need to show that $c_1\mathbf{u}_1 + \cdots + c_p\mathbf{u}_p = \mathbf{0}$ implies that $c_i = 0$. Dot product with \mathbf{u}_i gives $0 = (c_1\mathbf{u}_1 + \cdots + c_i\mathbf{u}_i + \cdots + c_p\mathbf{u}_p) \cdot \mathbf{u}_i = c_1\mathbf{u}_1 \cdot \mathbf{u}_i + \cdots + c_i\mathbf{u}_i \cdot \mathbf{u}_i + \cdots + c_p\mathbf{u}_p \cdot \mathbf{u}_i = c_i\mathbf{u}_i \cdot \mathbf{u}_i = c_i\mathbf{u}_i\mathbf{u}_i \cdot \mathbf{u}_i = c_i\mathbf{u}_i\mathbf{u}_i \cdot \mathbf{u}_i = c_i\mathbf{u}_i\mathbf{u}_i\mathbf{u}_i + \cdots + c_i\mathbf{u}_i\mathbf{u}_i\mathbf{u}_i\mathbf{u}_i = c_i\mathbf{u}_i\mathbf{$

A set of vectors $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is called **orthonormal** if it is an orthogonal set of unit vectors i.e. i.e. $\mathbf{u}_1 = \mathbf{v}_2 = \begin{cases} 0, & \text{if } i \neq j \end{cases}$

$$\mathbf{u}_i \cdot \mathbf{u}_j = \delta_{ij} = \begin{cases} 0, & \text{if } i \neq j \\ 1, & \text{if } i = j \end{cases}$$

If $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ is an orthogonal set then we get an orthonormal set by setting $\mathbf{u}_i = \mathbf{v}_i / ||\mathbf{v}_i||$. An **orthonormal basis** $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ for a subspace W is a basis that is also orthonormal.

Th If $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ is an orthonormal basis for a subspace W and $\mathbf{x} \in W$, then

$$\mathbf{x} = c_1 \mathbf{u}_1 + \dots + c_p \mathbf{u}_p, \quad \text{where} \quad c_i = \mathbf{x} \cdot \mathbf{u}_i$$

 $\mathbf{x} \cdot \mathbf{u}_i = (c_1 \mathbf{u}_1 + \dots + c_i \mathbf{u}_i + \dots + c_p \mathbf{u}_p) \cdot \mathbf{u}_i = c_1 \mathbf{u}_1 \cdot \mathbf{u}_i + \dots + c_i \mathbf{u}_i \cdot \mathbf{u}_i + \dots + c_p \mathbf{u}_p \cdot \mathbf{u}_i = c_i \mathbf{u}_i \cdot \mathbf{u}_i = c_i.$

If W is a subspace, the **orthogonal complement** W^{\perp} of W is the set of all vectors orthogonal to every vector in W i.e. $W^{\perp} = \{ \mathbf{x} \in \mathbf{R}^n ; \mathbf{x} \cdot \mathbf{w} = 0, \text{ for all } \mathbf{w} \in W \}$. W^{\perp} is a subspace. If $W = \text{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_p)$ then $W^{\perp} = \{ \mathbf{x} \in \mathbf{R}^n ; \mathbf{x} \cdot \mathbf{u}_1 = 0, \ldots, \mathbf{x} \cdot \mathbf{u}_p = 0 \}$.

The orthogonal decomposition theorem Let W be a subspace of \mathbb{R}^n and suppose that $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ is an orthonormal basis for W. Any $\mathbf{x} \in \mathbb{R}^n$ can be written uniquely as

 $\mathbf{x} = \mathbf{x}^{\parallel} + \mathbf{x}^{\perp}, \quad \text{with} \quad \mathbf{x}^{\parallel} \in W, \quad \mathbf{x}^{\perp} \in W^{\perp},$

where

$$\mathbf{x}^{\parallel} = \operatorname{proj}_{W} \mathbf{x} = c_1 \mathbf{u}_1 + \dots + c_p \mathbf{u}_p, \text{ where } c_i = \mathbf{x} \cdot \mathbf{u}_i$$

 \mathbf{x}^{\parallel} is called the **orthogonal projection** of \mathbf{x} onto W denoted by $\operatorname{proj}_{W} \mathbf{x}$.

Pf That $\mathbf{x}^{\parallel} \in W$ is clear and that $\mathbf{x}^{\perp} \in W^{\perp}$ follows from that it is orthogonal to all the \mathbf{u}_i :

$$\mathbf{x}^{\perp} \cdot \mathbf{u}_{i} = (\mathbf{x} - \mathbf{x}^{\parallel}) \cdot \mathbf{u}_{i} = \mathbf{x} \cdot \mathbf{u}_{i} - (c_{1}\mathbf{u}_{1} + \dots + c_{i}\mathbf{u}_{i} + \dots + c_{p}\mathbf{u}_{p}) \cdot \mathbf{u}_{i} = \mathbf{x} \cdot \mathbf{u}_{i} - c_{i}\mathbf{u}_{i} \cdot \mathbf{u}_{i} = 0.$$

The Pythagorean law: $\|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$ if and only if $\mathbf{x} \cdot \mathbf{y} = 0$. Cauchy-Schwarz inequality: $|\mathbf{x} \cdot \mathbf{y}| \le \|\mathbf{x}\| \|\mathbf{y}\|$.