15. Lecture 15: 5.1 Orthonormal Bases and Orthogonal Projection

The dot product between two vectors $\mathbf{x}=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]$ and $\mathbf{y}=\left[\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right]$ is $\mathbf{x} \cdot \mathbf{y}=x_{1} y_{1}+\cdots+x_{n} y_{n}$.
The length of the vector \mathbf{x} is $\|\mathbf{x}\|=\sqrt{\mathbf{x} \cdot \mathbf{x}}=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}$.
Two vectors \mathbf{x} and \mathbf{y} are said to be orthogonal if $\mathbf{x} \cdot \mathbf{y}=0$.
If θ is the angle between \mathbf{x} and \mathbf{y} then $\mathbf{x} \cdot \mathbf{y}=\|\mathbf{x}\|\|\mathbf{y}\| \cos \theta$.
Cauchy-Schwarz inequality: $|\mathrm{x} \cdot \mathrm{y}| \leq\|\mathrm{x}\|\|\mathrm{y}\|$.
The distance between \mathbf{x} and \mathbf{y} is $\|\mathbf{y}-\mathbf{x}\|$.
The Pythagorean law: says that $\|\mathbf{x}+\mathbf{y}\|^{2}=\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}$ if and only if $\mathbf{x} \cdot \mathbf{y}=0$. This follows since $\|x+y\|^{2}=(\mathbf{x}+\mathbf{y}) \cdot(\mathbf{x}+\mathbf{y})=\mathbf{x} \cdot \mathbf{x}+\mathbf{y} \cdot \mathbf{y}+\mathbf{x} \cdot \mathbf{y}+\mathbf{y} \cdot \mathbf{x}=\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}+2 \mathbf{x} \cdot \mathbf{y}$.
\mathbf{z} is said to be orthogonal to a subspace W if it is orthogonal to every vector in W. The set of all vectors \mathbf{z} that are orthogonal to a subspace $W \subset \mathbf{R}^{n}$ is called the orthogonal complement of W and is denoted by W^{\perp}.

$$
W^{\perp}=\left\{\mathbf{z} \in \mathbf{R}^{n} ; \mathbf{z} \cdot \mathbf{y}=0, \quad \text { for every } \quad \mathbf{y} \in W\right\}
$$

Ex If W is plane through the origin in \mathbf{R}^{3} and L is the line through the origin perpendicular to W, then $W^{\perp}=L$. In fact, clearly $L \subset W^{\perp}$ since L is perpendicular to W and any vector not in L is not perpendicular to W. Similarly $L^{\perp}=W$.
Ex If $V=\left\{\mathbf{x} \in \mathbf{R}^{3} ; \mathbf{x}=\alpha(1,1,1)\right.$, for some $\left.\alpha\right\}$ then $V^{\perp}=\left\{\mathbf{y} \in \mathbf{R}^{3} ; \alpha(1,1,1) \cdot \mathbf{y}=\right.$ 0 , for every $\alpha\}=\left\{\mathbf{y} \in \mathbf{R}^{3} ; y_{1}+y_{2}+y_{3}=0\right\}$.
(1) If $W=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ then $\mathbf{z} \in W^{\perp}$ if and only if $\mathbf{z} \cdot \mathbf{v}_{1}=\cdots=\mathbf{z} \cdot \mathbf{v}_{k}=0$.
(2) W^{\perp} is a subspace.
(3) Every vector $\mathbf{x} \in \mathbf{R}^{3}$ can be uniquely written as $\mathbf{x}=\mathbf{y}+\mathbf{z}$, where $\mathbf{y} \in W$ and $\mathbf{z} \in W^{\perp}$.

Orthogonal Sets

A set of vectors $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ in called an orthogonal set if $\mathbf{u}_{i} \cdot \mathbf{u}_{j}=0$ when $i \neq j$.
Ex Show that $\mathbf{u}_{1}=\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ is an orthogonal set? Sol:
$\mathbf{u}_{1} \cdot \mathbf{u}_{2}=1 \cdot 1+-1 \cdot 1+0 \cdot 0=0, \quad \mathbf{u}_{1} \cdot \mathbf{u}_{3}=1 \cdot 0+-1 \cdot 0+0 \cdot 1=0, \quad \mathbf{u}_{2} \cdot \mathbf{u}_{3}=1 \cdot 0+1 \cdot 0+0 \cdot 1=0$
Th Suppose that $S=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is an orthogonal set of nonzero vectors in \mathbf{R}^{n} and $W=$ $\operatorname{Span}\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$. Then S is a linearly independent set and a basis for W.
Pf Suppose that

$$
c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{p} \mathbf{u}_{p}=\mathbf{0}
$$

then

$$
\begin{gathered}
\left(c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{p} \mathbf{u}_{p}\right) \cdot \mathbf{u}_{1}=0 \\
c_{1} \mathbf{u}_{1} \cdot \mathbf{u}_{1}+c_{2} \mathbf{u}_{2} \cdot \mathbf{u}_{1}+\cdots+c_{p} \mathbf{u}_{p} \cdot \mathbf{u}_{1}=0 \\
c_{1} \mathbf{u}_{1} \cdot \mathbf{u}_{1}=0
\end{gathered}
$$

$c_{1}=0$ since $\mathbf{u}_{1} \cdot \mathbf{u}_{1}>0$. Similarly $c_{2}=\cdots=c_{p}=0$, so S is a linearly independent set.
A set of vectors $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is called an orthogonal basis if it is orthogonal and a basis.
Th If $S=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is an orthogonal basis for a subspace W and $\mathbf{y} \in W$, then

Pf

$$
\mathbf{x}=c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{p} \mathbf{u}_{p}, \quad \text { where } \quad c_{i}=\frac{\mathbf{x} \cdot \mathbf{u}_{i}}{\mathbf{u}_{i} \cdot \mathbf{u}_{i}}
$$

$\mathbf{x} \cdot \mathbf{u}_{1}=\left(c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{p} \mathbf{u}_{p}\right) \cdot \mathbf{u}_{1}=c_{1} \mathbf{u}_{1} \cdot \mathbf{u}_{1}+c_{2} \mathbf{u}_{2} \cdot \mathbf{u}_{1}+\cdots+c_{p} \mathbf{u}_{p} \cdot \mathbf{u}_{1}=c_{1} \mathbf{u}_{1} \cdot \mathbf{u}_{1}$
Hence $c_{1}=\frac{\mathbf{u}_{1} \cdot \mathbf{x}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}}$ and similarly $c_{2}=\frac{\mathbf{u}_{2} \cdot \mathbf{x}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}}, \quad \ldots \quad c_{p}=\frac{\mathbf{u}_{p} \cdot \mathbf{x}}{\mathbf{u}_{p} \cdot \mathbf{u}_{p}}$
$\mathbf{E x}$ Write $\mathbf{x}=\left[\begin{array}{l}3 \\ 7 \\ 4\end{array}\right]$ as a linear combination of $\mathbf{u}_{1}=\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$.
Sol Since $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is and orthogonal basis it follows from the previous theorem that $\mathbf{x}=c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+c_{3} \mathbf{u}_{3}$, where

$$
c_{1}=\frac{\mathbf{u}_{1} \cdot \mathbf{x}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}}=-2, \quad c_{2}=\frac{\mathbf{u}_{2} \cdot \mathbf{x}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}}=5, \quad c_{3}=\frac{\mathbf{u}_{3} \cdot \mathbf{x}}{\mathbf{u}_{3} \cdot \mathbf{u}_{3}}=4
$$

Hence $\mathbf{x}=-2 \mathbf{u}_{1}+5 \mathbf{u}_{2}+4 \mathbf{u}_{3}$.
A set of vectors $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is called orthonormal if it is a orthogonal set of unit vectors i.e.

$$
\mathbf{u}_{i} \cdot \mathbf{u}_{j}=\delta_{i j}= \begin{cases}0, & \text { if } i \neq j \\ 1, & \text { if } i=j\end{cases}
$$

If $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is an orthognal set then we get an orthonormal set $\mathbf{u}_{i}=\mathbf{v}_{i} /\|\mathbf{v}\|_{i} \|$.
An orthonormal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ for a subspace W is a basis that is also orthonormal.
Th If $S=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is an orthonormal basis for a subspace W and $\mathbf{x} \in W$, then

$$
\mathbf{x}=c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{p} \mathbf{u}_{p}, \quad \text { where } \quad c_{i}=\mathbf{x} \cdot \mathbf{u}_{i}
$$

Orthogonal Projection

We will now calculate the orthogonal projection of \mathbf{x} onto \mathbf{u}.
It is a vector $\mathbf{x}^{\|}=\alpha \mathbf{u}$ in the direction of \mathbf{u}, such that $\mathbf{x}-\mathbf{x}^{\|}$is orthogonal to \mathbf{u} :

$$
(\mathbf{x}-\alpha \mathbf{u}) \cdot \mathbf{v}=0 \quad \Leftrightarrow \quad \mathbf{x} \cdot \mathbf{u}-\alpha \mathbf{u} \cdot \mathbf{u}=0 \quad \Leftrightarrow \quad \alpha=\frac{\mathbf{x} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}
$$

The orthogonal projection of \mathbf{x} onto \mathbf{u} is the vector $\mathbf{x}^{\|}=\frac{\mathbf{x} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}$. We can write

$$
\mathbf{x}=\mathbf{x}^{\|}+\mathbf{x}^{\perp}
$$

where \mathbf{x}^{\perp} is called the component orthogonal to \mathbf{u}.
Ex Suppose that $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is an orthogonal basis for \mathbf{R}^{3} and let $W=\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$. Write $\mathbf{x}=\mathbf{x}^{\|}+\mathbf{x}^{\perp}$, where $\mathbf{x} \in W$ and $\mathbf{x}^{\perp} \in W^{\perp}$, i.e. \mathbf{x}^{\perp} is perpendicular to every vector in W, i.e $\mathbf{x}^{\perp} \cdot \mathbf{u}_{1}=0=\mathbf{x}^{\perp} \cdot \mathbf{u}_{2}$.
Sol By a previous theorem we can write $\mathbf{x}=\frac{\mathbf{x} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}+\frac{\mathbf{x} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} \mathbf{u}_{2}+\frac{\mathbf{x} \cdot \mathbf{u}_{3}}{\mathbf{u}_{3} \cdot \mathbf{u}_{3}} \mathbf{u}_{3}$ Let $\mathbf{x}^{\|}=$ $\frac{\mathbf{x} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}+\frac{\mathbf{x} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} \mathbf{u}_{2}$. Then $\mathbf{x}^{\|} \in W$ and $\mathbf{x}^{\perp}=\frac{\mathbf{x} \cdot \mathbf{u}_{3}}{\mathbf{u}_{3} \cdot \mathbf{u}_{3}} \mathbf{u}_{3}$ is orthogonal to W, since $\mathrm{x}^{\perp} \cdot \mathbf{u}_{1}=\mathrm{x}^{\perp} \cdot \mathbf{u}_{2}=0$.
$\mathbf{x}^{\|}$is called the projection of \mathbf{x} onto W
Ex Let $W=\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$, where $\mathbf{u}_{1}=\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$, and let $\mathbf{x}=\left[\begin{array}{c}0 \\ 3 \\ 10\end{array}\right]$.
Write $\mathbf{x}=\mathbf{x}^{\|}+\mathbf{x}^{\perp}$, where $\mathbf{x}^{\|} \in W$ and $\mathbf{x}^{\perp} \in W^{\perp}$.
Sol Since $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is an orthogonal basis it follows that

$$
\begin{gathered}
\mathbf{x}^{\|}=\frac{\mathbf{x} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}}+\frac{\mathbf{x} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}}=\frac{10}{10}\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right]+\frac{3}{1}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-3 \\
0 \\
9
\end{array}\right] . \\
\mathbf{x}^{\perp}=\mathbf{x}-\mathbf{x}^{\|}=\left[\begin{array}{c}
0 \\
3 \\
10
\end{array}\right]-\left[\begin{array}{c}
-3 \\
0 \\
9
\end{array}\right]=\left[\begin{array}{l}
3 \\
3 \\
1
\end{array}\right]
\end{gathered}
$$

The orthogonal decomposition theorem Let W be a subspace of \mathbf{R}^{n} and suppose that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is an orthogonal basis for W. Any $\mathbf{x} \in \mathbf{R}^{n}$ can be written uniquely as

$$
\mathbf{x}=\mathrm{x}^{\|}+\mathrm{x}^{\perp},
$$

where

$$
\mathbf{x}^{\|}=\frac{\mathbf{x} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}+\cdots+\frac{\mathbf{x} \cdot \mathbf{u}_{p}}{\mathbf{u}_{p} \cdot \mathbf{u}_{p}} \mathbf{u}_{p}
$$

and $\mathbf{x}^{\perp}=\mathbf{x}-\mathbf{x}^{\|} \in W^{\perp}$, the orthogonal complement $W^{\perp}=\left\{\mathbf{z} \in \mathbf{R}^{n} ; \mathbf{z} \cdot \mathbf{u}_{1}=0, \ldots, \mathbf{z} \cdot \mathbf{u}_{p}=0\right\}$. $\mathbf{x}^{\|}=\operatorname{proj}_{W} \mathbf{x}$ is called the orthogonal projection of \mathbf{x} onto W.

Th Suppose that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is an orthonormal basis for W, i.e. $\mathbf{u}_{i} \cdot \mathbf{u}_{j}=\delta_{i j}$. Then

$$
\operatorname{proj}_{W} \mathbf{x}=\left(\mathbf{x} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+\cdots+\left(\mathbf{x} \cdot \mathbf{u}_{p}\right) \mathbf{u}_{p}
$$

SUMMARY

The dot product between two vectors $\mathbf{x}=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]$ and $\mathbf{y}=\left[\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right]$ is $\mathbf{x} \cdot \mathbf{y}=x_{1} y_{1}+\cdots+x_{n} y_{n}$. The length of the vector \mathbf{x} is $\|\mathbf{x}\|=\sqrt{\mathbf{x} \cdot \mathbf{x}}=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}$.
\mathbf{x} and \mathbf{y} are said to be orthogonal if $\mathbf{x} \cdot \mathbf{y}=0$.
A set of vectors $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ in called an orthogonal set if $\mathbf{u}_{i} \cdot \mathbf{u}_{j}=0$ when $i \neq j$.
Th An orthogonal set of nonzero vectors is linearly independent.
Pf We need to show that $c_{1} \mathbf{u}_{1}+\cdots+c_{p} \mathbf{u}_{p}=\mathbf{0}$ implies that $c_{i}=0$. Dot product with \mathbf{u}_{i} gives $0=\left(c_{1} \mathbf{u}_{1}+\cdots+c_{i} \mathbf{u}_{i}+\cdots+c_{p} \mathbf{u}_{p}\right) \cdot \mathbf{u}_{i}=c_{1} \mathbf{u}_{1} \cdot \mathbf{u}_{i}+\cdots+c_{i} \mathbf{u}_{i} \cdot \mathbf{u}_{i}+\cdots+c_{p} \mathbf{u}_{p} \cdot \mathbf{u}_{i}=c_{i} \mathbf{u}_{i} \cdot \mathbf{u}_{i}=c_{i}$.

A set of vectors $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is called orthonormal if it is an orthogonal set of unit vectors i.e.

$$
\mathbf{u}_{i} \cdot \mathbf{u}_{j}=\delta_{i j}= \begin{cases}0, & \text { if } i \neq j \\ 1, & \text { if } i=j\end{cases}
$$

If $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is an orthognal set then we get an orthonormal set by setting $\mathbf{u}_{i}=\mathbf{v}_{i} /\left\|\mathbf{v}_{i}\right\|$. An orthonormal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ for a subspace W is a basis that is also orthonormal.

Th If $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is an orthonormal basis for a subspace W and $\mathbf{x} \in W$, then
Pf

$$
\mathbf{x}=c_{1} \mathbf{u}_{1}+\cdots+c_{p} \mathbf{u}_{p}, \quad \text { where } \quad c_{i}=\mathbf{x} \cdot \mathbf{u}_{i}
$$

$\mathbf{x} \cdot \mathbf{u}_{i}=\left(c_{1} \mathbf{u}_{1}+\cdots+c_{i} \mathbf{u}_{i}+\cdots+c_{p} \mathbf{u}_{p}\right) \cdot \mathbf{u}_{i}=c_{1} \mathbf{u}_{1} \cdot \mathbf{u}_{i}+\cdots+c_{i} \mathbf{u}_{i} \cdot \mathbf{u}_{i}+\cdots+c_{p} \mathbf{u}_{p} \cdot \mathbf{u}_{i}=c_{i} \mathbf{u}_{i} \cdot \mathbf{u}_{i}=c_{i}$.

If W is a subspace, the orthogonal complement W^{\perp} of W is the set of all vectors orthogonal to every vector in W i.e. $W^{\perp}=\left\{\mathbf{x} \in \mathbf{R}^{n} ; \mathbf{x} \cdot \mathbf{w}=0\right.$, for all $\left.\mathbf{w} \in W\right\} . W^{\perp}$ is a subspace. If $W=\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right)$ then $W^{\perp}=\left\{\mathbf{x} \in \mathbf{R}^{n} ; \mathbf{x} \cdot \mathbf{u}_{1}=0, \ldots, \mathbf{x} \cdot \mathbf{u}_{p}=0\right\}$.

The orthogonal decomposition theorem Let W be a subspace of \mathbf{R}^{n} and suppose that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is an orthonormal basis for W. Any $\mathbf{x} \in \mathbf{R}^{n}$ can be written uniquely as

$$
\mathbf{x}=\mathbf{x}^{\|}+\mathbf{x}^{\perp}, \quad \text { with } \quad \mathbf{x}^{\|} \in W, \quad \mathbf{x}^{\perp} \in W^{\perp}
$$

where

$$
\mathbf{x}^{\|}=\operatorname{proj}_{W} \mathbf{x}=c_{1} \mathbf{u}_{1}+\cdots+c_{p} \mathbf{u}_{p}, \quad \text { where } \quad c_{i}=\mathbf{x} \cdot \mathbf{u}_{i}
$$

$\mathbf{x}^{\|}$is called the orthogonal projection of \mathbf{x} onto W denoted by $\operatorname{proj}_{W} \mathbf{x}$.
Pf That $\mathbf{x}^{\|} \in W$ is clear and that $\mathbf{x}^{\perp} \in W^{\perp}$ follows from that it is orthogonal to all the \mathbf{u}_{i} :

$$
\mathbf{x}^{\perp} \cdot \mathbf{u}_{i}=\left(\mathbf{x}-\mathbf{x}^{\|}\right) \cdot \mathbf{u}_{i}=\mathbf{x} \cdot \mathbf{u}_{i}-\left(c_{1} \mathbf{u}_{1}+\cdots+c_{i} \mathbf{u}_{i}+\cdots+c_{p} \mathbf{u}_{p}\right) \cdot \mathbf{u}_{i}=\mathbf{x} \cdot \mathbf{u}_{i}-c_{i} \mathbf{u}_{i} \cdot \mathbf{u}_{i}=0 .
$$

The Pythagorean law: $\|\mathbf{x}+\mathbf{y}\|^{2}=\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}$ if and only if $\mathbf{x} \cdot \mathbf{y}=0$.
Cauchy-Schwarz inequality: $|\mathrm{x} \cdot \mathrm{y}| \leq\|\mathrm{x}\|\|\mathrm{y}\|$.

