16. Lecture 16 5.2 The Gram-Schmidt Orthogonalization Process

Here we will learn a process for constructing an orthonormal basis for subspace W of \mathbf{R}^{m}. Starting from any basis $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right\}$ for W we construct an orthonormal basis $\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{n}\right\}$. We will construct the \mathbf{u}_{i} 's inductively so that $\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{k}\right\}$ are orthonormal and

$$
\operatorname{Span}\left(\mathbf{u}_{1}, \cdots, \mathbf{u}_{k}\right)=\operatorname{Span}\left(\mathbf{v}_{1}, \cdots, \mathbf{v}_{k}\right)
$$

for $k=1, \ldots, n$. To begin the process, let

$$
\mathbf{u}_{1}=\frac{1}{\left\|\mathbf{v}_{1}\right\|} \mathbf{v}_{1}
$$

Then $\operatorname{Span}\left(\mathbf{u}_{1}\right)=\operatorname{Span}\left(\mathbf{v}_{1}\right)$, since \mathbf{u}_{1} is a multiple of \mathbf{v}_{1} and $\left\|\mathbf{u}_{1}\right\|=1$. Let \mathbf{p}_{1} be the projection of \mathbf{v}_{2} onto $\operatorname{Span}\left(\mathbf{v}_{1}\right)=\operatorname{Span}\left(\mathbf{u}_{1}\right)$, i.e.

$$
\mathbf{p}_{1}=\left(\mathbf{v}_{2} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}, \quad \mathbf{v}_{2}-\mathbf{p}_{1} \in \operatorname{Span}\left(\mathbf{u}_{1}\right)^{\perp}
$$

Then $\mathbf{v}_{2}-\mathbf{p}_{1} \neq \mathbf{0}$ since $\mathbf{v}_{2} \notin \operatorname{Span}\left(\mathbf{u}_{1}\right)$. If we set

$$
\mathbf{u}_{2}=\frac{1}{\left\|\mathbf{v}_{2}-\mathbf{p}_{1}\right\|}\left(\mathbf{v}_{2}-\mathbf{p}_{1}\right)
$$

then \mathbf{u}_{2} is a unit vector orthogonal to $\operatorname{Span}\left(\mathbf{u}_{1}\right)$ and $\operatorname{Span}\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)=\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$. To construct \mathbf{u}_{3} let \mathbf{p}_{3} be the projection of \mathbf{v}_{3} into $\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$:

$$
\mathbf{p}_{2}=\left(\mathbf{v}_{3} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+\left(\mathbf{v}_{3} \cdot \mathbf{u}_{2}\right) \mathbf{u}_{2}
$$

and set

$$
\mathbf{u}_{3}=\frac{1}{\left\|\mathbf{v}_{3}-\mathbf{p}_{2}\right\|}\left(\mathbf{v}_{3}-\mathbf{p}_{2}\right)
$$

In general we define \mathbf{u}_{k} recursively by

$$
\mathbf{u}_{k+1}=\frac{1}{\left\|\mathbf{v}_{k+1}-\mathbf{p}_{k}\right\|}\left(\mathbf{v}_{k+1}-\mathbf{p}_{k}\right)
$$

where

$$
\mathbf{p}_{k}=\left(\mathbf{v}_{k+1} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+\cdots+\left(\mathbf{v}_{k+1} \cdot \mathbf{u}_{k}\right) \mathbf{u}_{k}
$$

is the projection of \mathbf{v}_{k+1} onto $\operatorname{Span}\left(\mathbf{u}_{1}, \cdots, \mathbf{u}_{k}\right)$. This procedure, called the Gram-Schmidt orthogonalization process yields an orthonormal basis $\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{n}\right\}$ for W.

Ex Find an orthonormal basis for the plane $F=\left\{\mathbf{x} \in \mathbf{R}^{3} ; x_{1}+x_{2}+x_{3}=0\right\}$.
Sol $\mathbf{v}_{1}=(1,-1,0)^{T}$ and $\mathbf{v}_{2}=(1,0,-1)^{T}$ are two vectors in the plane.
First let $\mathbf{u}_{1}=\frac{1}{\left\|\mathbf{v}_{1}\right\|} \mathbf{v}_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]$. Then let $\mathbf{p}_{1}=\left(\mathbf{v}_{2} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}=\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]$.
Since $\mathbf{v}_{2}-\mathbf{p}_{1}=\frac{1}{2}\left[\begin{array}{c}1 \\ 1 \\ -2\end{array}\right]$ we get $\mathbf{u}_{2}=\frac{1}{\left\|\mathbf{v}_{2}-\mathbf{p}_{1}\right\|}\left(\mathbf{v}_{2}-\mathbf{p}_{1}\right)=\frac{1}{\sqrt{6}}\left[\begin{array}{c}1 \\ 1 \\ -2\end{array}\right]$.

QR factorization

One can also use the Gram-Schmidt process to obtain the so called $Q R$ factorization of a matrix $A=Q R$, where the column vectors of Q are orthonormal and R is upper triangular. In fact if M is an $m \times n$ matrix such that the n column vectors of $M=\left[\mathbf{v}_{1} \cdots \mathbf{v}_{n}\right]$ form a basis for a subspace W of \mathbf{R}^{m} we can perform the Gram-Schmidt process on these to obtain an orthonormal basis $\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{n}\right\}$ such that $\operatorname{Span}\left(\mathbf{u}_{1}, \cdots, \mathbf{u}_{k}\right)=\operatorname{Span}\left(\mathbf{v}_{1}, \cdots, \mathbf{v}_{k}\right)$, for $k=1, \ldots, n$. Hence for some constants $r_{i j}$

$$
\mathbf{v}_{k}=r_{1 k} \mathbf{u}_{1}+\cdots+\mathbf{r}_{k k} \mathbf{u}_{k}+0 \mathbf{u}_{k+1}+\cdots 0 \mathbf{u}_{n}, \quad k=1, \ldots, n
$$

Let R be the upper triangular matrix with column vectors defined by

$$
\begin{array}{lrl}
R=\left[\mathbf{r}_{1} \cdots \mathbf{r}_{n}\right], & \text { where } & \mathbf{r}_{k}=\left[\begin{array}{c}
r_{k k} \\
0 \\
\vdots \\
Q \mathbf{r}_{k}=r_{1 k} \mathbf{u}_{1}+\cdots+r_{k k} \mathbf{u}_{k}=\mathbf{v}_{k}
\end{array}\right],
\end{array}
$$

and hence

$$
Q R=\left[Q \mathbf{r}_{1} \cdots Q \mathbf{r}_{n}\right]=\left[\mathbf{v}_{1} \cdots \mathbf{v}_{n}\right]=M
$$

Note that in principle one can calculate what R is from the Gram-Schmidt process:

$$
\begin{aligned}
r_{11} \mathbf{u}_{1}=\mathbf{v}_{1}, \quad r_{11}=\left\|\mathbf{v}_{1}\right\|, \\
r_{22} \mathbf{u}_{2}=\mathbf{v}_{2}-\mathbf{p}_{1}, \quad \mathbf{p}_{1}=r_{12} \mathbf{u}_{1}, \quad r_{12}=\left\langle\mathbf{v}_{2}, \mathbf{u}_{1}\right\rangle, \quad r_{22}=\left\|\mathbf{v}_{2}-\mathbf{p}_{1}\right\|,
\end{aligned}
$$

and so on

$$
r_{k k} \mathbf{u}_{k}=\mathbf{v}_{k}-\mathbf{p}_{k-1}, \quad \mathbf{p}_{k-1}=r_{1 k} \mathbf{u}_{1}+\cdots+r_{(k-1) k} \mathbf{u}_{k-1}, \quad r_{\ell k}=\left\langle\mathbf{v}_{k}, \mathbf{u}_{\ell}\right\rangle, \quad r_{k k}=\left\|\mathbf{v}_{k}-\mathbf{p}_{k-1}\right\| .
$$

However, it is simpler to get R just from using that $M=Q R$ and that $Q^{T} Q=I$ so that

$$
R=Q^{T} Q R=Q^{T} M
$$

That $Q^{T} Q=I$ follows from that the columns of Q are orthonormal:

$$
Q^{T} Q=\left[\begin{array}{cc}
-\mathbf{u}_{1}^{T} & - \\
-\mathbf{u}_{2}^{T} & - \\
\vdots & \\
-\mathbf{u}_{n}^{T} & -
\end{array}\right]\left[\begin{array}{cc}
\mid & \\
\mathbf{u}_{1} \mathbf{u}_{2} \cdots & \mid \\
\mid & \\
\mid & \mid
\end{array}\right]=\left[\begin{array}{cccc}
\mathbf{u}_{1} \cdot \mathbf{u}_{1} & \mathbf{u}_{1} \cdot \mathbf{u}_{2} & \cdots & \mathbf{u}_{1} \cdot \mathbf{u}_{n} \\
\mathbf{u}_{2} \cdot \mathbf{u}_{1} & \mathbf{u}_{2} \cdot \mathbf{u}_{2} & \cdots & \mathbf{u}_{2} \cdot \mathbf{u}_{n} \\
\vdots & \vdots & & \vdots \\
\mathbf{u}_{n} \cdot \mathbf{u}_{1} & \mathbf{u}_{n} \cdot \mathbf{u}_{2} & \cdots & \mathbf{u}_{n} \cdot \mathbf{u}_{n}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]
$$

Ex Find the $Q R$ factorization of $M=\left[\begin{array}{ll}1 & 2 \\ 1 & 2 \\ 0 & 3\end{array}\right]$. Sol Use Gram Schmidt on the columns of $M=\left[\mathbf{v}_{1} \mathbf{v}_{2}\right]$ to find an orthonormal basis $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ and from that construct $Q=\left[\mathbf{u}_{1} \mathbf{u}_{2}\right]$. We have $\mathbf{u}_{1}=\frac{1}{\left\|\mathbf{v}_{1}\right\|} \mathbf{v}_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ and with $\mathbf{p}_{1}=\left(\mathbf{v}_{2} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}=\frac{4}{\sqrt{2}} \frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]=2\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ we have $\mathbf{v}_{2}-\mathbf{p}_{1}=\left[\begin{array}{l}0 \\ 0 \\ 3\end{array}\right]$ so $\mathbf{u}_{2}=\frac{1}{\left\|\mathbf{v}_{2}-\mathbf{p}_{1}\right\|}\left(\mathbf{v}_{2}-\mathbf{p}_{1}\right)=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$.
It follows that $Q=\left[\begin{array}{cc}1 / \sqrt{2} & 0 \\ 1 / \sqrt{2} & 0 \\ 0 & 1\end{array}\right]$ and $R=Q^{T} M=\left[\begin{array}{ccc}1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{cc}1 & 2 \\ 1 & 2 \\ 0 & 3\end{array}\right]=\left[\begin{array}{cc}\sqrt{2} & 2 \sqrt{2} \\ 0 & 3\end{array}\right]$.

Summary

Starting from any basis $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right\}$ for W we construct an orthonormal basis $\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{n}\right\}$. We will construct the \mathbf{u}_{i} 's inductively so that $\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{k}\right\}$ are orthonormal and

$$
\operatorname{Span}\left(\mathbf{u}_{1}, \cdots, \mathbf{u}_{k}\right)=\operatorname{Span}\left(\mathbf{v}_{1}, \cdots, \mathbf{v}_{k}\right)
$$

for $k=1, \ldots, n$. To begin the process, let

$$
\mathbf{u}_{1}=\frac{1}{\left\|\mathbf{v}_{1}\right\|} \mathbf{v}_{1}
$$

Then $\operatorname{Span}\left(\mathbf{u}_{1}\right)=\operatorname{Span}\left(\mathbf{v}_{1}\right)$, since \mathbf{u}_{1} is a multiple of \mathbf{v}_{1} and $\left\|\mathbf{u}_{1}\right\|=1$.
Let \mathbf{p}_{1} be the projection of \mathbf{v}_{2} onto $\operatorname{Span}\left(\mathbf{v}_{1}\right)=\operatorname{Span}\left(\mathbf{u}_{1}\right)$, i.e.

$$
\mathbf{p}_{1}=\left(\mathbf{v}_{2} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}, \quad \mathbf{v}_{2}-\mathbf{p}_{1} \in \operatorname{Span}\left(\mathbf{u}_{1}\right)^{\perp}
$$

Then $\mathbf{v}_{2}-\mathbf{p}_{1} \neq \mathbf{0}$ since $\mathbf{v}_{2} \notin \operatorname{Span}\left(\mathbf{u}_{1}\right)$. If we set

$$
\mathbf{u}_{2}=\frac{1}{\left\|\mathbf{v}_{2}-\mathbf{p}_{1}\right\|}\left(\mathbf{v}_{2}-\mathbf{p}_{1}\right)
$$

then \mathbf{u}_{2} is a unit vector orthogonal to $\operatorname{Span}\left(\mathbf{u}_{1}\right)$ and $\operatorname{Span}\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)=\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$. To construct \mathbf{u}_{3} let \mathbf{p}_{3} be the projection of \mathbf{v}_{3} into $\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$:
and set
In general we define \mathbf{u}_{k} recursively by

$$
\mathbf{p}_{2}=\left(\mathbf{v}_{3} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+\left(\mathbf{v}_{3} \cdot \mathbf{u}_{2}\right) \mathbf{u}_{2}
$$

where

$$
\mathbf{u}_{3}=\frac{1}{\left\|\mathbf{v}_{3}-\mathbf{p}_{2}\right\|}\left(\mathbf{v}_{3}-\mathbf{p}_{2}\right)
$$

$$
\mathbf{u}_{k+1}=\frac{1}{\left\|\mathbf{v}_{k+1}-\mathbf{p}_{k}\right\|}\left(\mathbf{v}_{k+1}-\mathbf{p}_{k}\right)
$$

$$
\mathbf{p}_{k}=\left(\mathbf{v}_{k+1} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+\cdots+\left(\mathbf{v}_{k+1} \cdot \mathbf{u}_{k}\right) \mathbf{u}_{k}
$$

is the projection of \mathbf{v}_{k+1} onto $\operatorname{Span}\left(\mathbf{u}_{1}, \cdots, \mathbf{u}_{k}\right)$. This procedure, called the Gram-Schmidt orthogonalization process yields an orthonormal basis $\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{n}\right\}$ for W.

One can also use the Gram-Schmidt process to obtain the so called $Q R$ factorization of a matrix $A=Q R$, where the column vectors of Q are orthonormal and R is upper triangular. In fact if M is an $m \times n$ matrix such that the n column vectors of $M=\left[\mathbf{v}_{1} \cdots \mathbf{v}_{n}\right]$ form a basis for a subspace W of \mathbf{R}^{m} we can perform the Gram-Schmidt process on these to obtain an orthonormal basis $\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{n}\right\}$ such that $\operatorname{Span}\left(\mathbf{u}_{1}, \cdots, \mathbf{u}_{k}\right)=\operatorname{Span}\left(\mathbf{v}_{1}, \cdots, \mathbf{v}_{k}\right)$, for $k=1, \ldots, n$. Hence for some constants $r_{i j}$

$$
\mathbf{v}_{k}=r_{1 k} \mathbf{u}_{1}+\cdots+\mathbf{r}_{k k} \mathbf{u}_{k}+0 \mathbf{u}_{k+1}+\cdots 0 \mathbf{u}_{n}, \quad k=1, \ldots, n
$$

Let R be the upper triangular matrix with column vectors defined by

$$
R=\left[\mathbf{r}_{1} \cdots \mathbf{r}_{n}\right], \quad \text { where }
$$

and let $Q=\left[\mathbf{u}_{1} \cdots \mathbf{u}_{n}\right]$. Then

$$
Q \mathbf{r}_{k}=r_{1 k} \mathbf{u}_{1}+\cdots+r_{k k} \mathbf{u}_{k}=\mathbf{v}_{k}
$$

$$
\mathbf{r}_{k}=\left[\begin{array}{c}
r_{1 k} \\
\vdots \\
r_{k k} \\
0 \\
\vdots \\
0
\end{array}\right]
$$

and hence

$$
Q R=\left[Q \mathbf{r}_{1} \cdots Q \mathbf{r}_{n}\right]=\left[\mathbf{v}_{1} \cdots \mathbf{v}_{n}\right]=M .
$$

Note that in principle one can calculate what R is from the Gram-Schmidt process. However, it is simpler to get R just from using that $M=Q R$ and that $Q^{T} Q=I$ so that

$$
R=Q^{T} Q R=Q^{T} M
$$

