
18. Lecture 18: 5.4 Least-Square Problems

The orthogonal decomposition theorem Let W be a subspace of Rn. Any x ∈ Rn can
be written uniquely as

x = x‖ + x⊥, with x‖ ∈ W, x⊥ ∈ W⊥,

where x‖ = projW x is the orthogonal projection of x onto W and W⊥ is the orthogonal
complement of W (i.e. all vectors orthogonal to every vector in W .)

The best approximation theorem Let W be a subspace of Rn and x ∈ Rn. Then the
orthogonal projection x‖ of x onto W is the point in W closest to x, i.e.

‖x− x‖‖ < ‖x− v‖, for all v ∈ W, v 6= x‖.

Pf We can write
x− v = x− x‖ + x‖ − v

where x−x‖ ∈ W⊥ and x‖−v ∈ W are orthogonal and hence

||x− v‖2 = ‖x− x‖‖2 + ‖x‖ − v‖2 > ‖x− x‖‖2.
by the Pythagorean theorem: ‖u + v‖2 = ‖u‖2 + ‖v‖2 if and only if u · v = 0.

Ex Find the closest point to x=


2
4
0
−2

 to W = Span{u1,u2}, u1 =


1
1
0
0

, u2 =


0
0
1
1

.

Sol x‖ =
x · u1

u1 · u1

u1 +
x · u2

u2 · u2

u2 = 3


1
1
0
0

+ (−1)


0
0
1
1

 =


3
3
−1
−1

.

We showed last lecture that the transpose satisfy

u · (ATv) = (Au) ·v, for all u,v. (18.1)

From this it follows that
Th We have

(ImA)⊥ = KerAT

Pf In fact if v ∈ KerAT if and only if the left hand side of (18.1) is 0 for all u and v ∈ (ImA)⊥

if and only if the right hand side of (18.1) is 0 for all u.
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Least Square Solution

A standard statistical technique is to find a least square fit to data points in the by some
simple curve e.g. a line. Since there might be errors in the measurements of the data we do
not require the curve to pass through the points but instead be such that it is the optimal
approximation to the data in the sense that the sum of squares of the error between the y
values of the data points and the points on the curve should be minimized.

A least square problem may be formulated as an overdetermined linear system. A sys-
tem with more equations than unknowns usually is inconsistent. Given a system Ax = b,
where A is an m×n matrix with m>n, we want to find an x that makes ‖Ax−b‖ as small
as possible. This is called the least square solution:

Def The least square solution x∗ of the system Ax = b is a vector such that

‖Ax∗ − b‖ ≤ ‖Ax− b‖, for all x ∈ Rn

Formulated differently, we want to find the vector p ∈W = ImA that is closest to b. From
the previous section we know that p = projWb, is the orthogonal projection of b onto W .
Since p∈ ImA, there is x∗ such that Ax∗=p. However we do not know if x∗ is unique.

Since p = projWb it follows that b− p is orthogonal W = ImA, i.e. in (ImA)⊥. But recall
that (ImA)⊥ = KerAT . Hence b− Ax∗ ∈ KerAT , i.e.

ATAx∗ = ATb (18.2)

This so called normal equation represents a much smaller n × n system. It still remains
to find out if the solution to this system is unique. For this we have the help of

Th We have
KerA = Ker(ATA)

Pf If ATAx = 0 then Ax is in the image of A and in the kernel of AT . But recall that
(ImA)⊥ = KerAT . Therefore Ax would be both in the image of A and in it is orthogonal
complement, i.e. it would be orthogonal to itself so ‖Ax‖2 = (Ax)·(Ax) = 0, but this implies
that Ax = 0, i.e. x ∈ KerA.

We have now proven:
Th If A is an m× n matrix of rank n (i.e. KerA = {0} by the rank-nullity theorem) then
(18.2) has a unique solution

x∗ = (ATA)−1ATb

and x∗ is the least square solution of the problem Ax = b.

Note also that we can use the solution of the normal equation to construct the orthogo-
nal projection onto the subspace spanned by the column vectors of A:

p = projWb = Ax∗ = A(ATA)−1ATb
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Ex Find the least square solution to Ax=b where A=

 1 1
1 2
1 3

, b=

 0
0
6

.

ATA =

[
1 1 1
1 2 3

] 1 1
1 2
1 3

 =

[
3 6
6 14

]
and

(ATA)−1 =
1

6

[
14 −6
−6 3

]
and

ATb =

[
1 1 1
1 2 3

] 0
0
6

 =

[
6
18

]
Hence

x∗ = (ATA)−1ATb =
1

6

[
14 −6
−6 3

] [
6
18

]
=

[
−4
3

]

Ex Find the least square fit by a line to the following three points in the plane:

x 1 2 3

y 0 0 6

Sol We want to find the line y = c0 + c1x that is closest to going through the three points,
(xi, yi), i = 1, 2, 3, i.e. such that 42

1 +42
2 +42

3 is as small as possible, where

4i = yi − (c0 + c1xi), i = 1, 2, 3

Or if we plug in the values of (xi, yi) and write it in matrix form we want to make the vector

4 =

 0
0
6

−
 1 1

1 2
1 3

[ c0
c1

]
as small as possible. (Note that the 1s in the matrix comes from that c0 is multiplied by 1.)
But this is exactly the least square problem in the previous example, and the solution is
(c0, c1)

T = (−4, 3)T .
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Summary

Let A be an m×n matrix with m ≥ n. If m > n the system Ax = b is over determined and
may not have a solution. Instead we will look for an approximate solution.
The best approximation theorem Let W be a subspace of Rn and x ∈ Rn. Then the
orthogonal projection x‖ of x onto W is the point in W closest to x, i.e.

‖x− x‖‖ < ‖x− v‖, for all v ∈ W, v 6= x‖.

Def The least square solution x∗ of the system Ax = b is a vector such that

‖Ax∗ − b‖ ≤ ‖Ax− b‖, for all x ∈ Rn

Formulated differently, we want to find the vector p ∈W = ImA that is closest to b. From
the previous section we know that p = projWb, is the orthogonal projection of b onto W .
Since p∈ ImA, there is x∗ such that Ax∗=p. However we do not know if x∗ is unique.

Th We have (ImA)⊥ = KerAT

Pf This follows from that u ·(ATv) = (Au) ·v, for all u,v (which we proved in last lecture).

Since p = projWb it follows that b− p is orthogonal W = ImA, i.e. in (ImA)⊥. But recall
that (ImA)⊥ = KerAT . Hence b− Ax∗ ∈ KerAT , i.e.

ATAx∗ = ATb (18.3)

This so called normal equation represents a much smaller n× n system.
Th If A is an m× n matrix of rank n (i.e. KerA = {0}) then (18.3) has a unique solution

x∗ = (ATA)−1ATb

and x∗ is the unique least square solution of the problem Ax = b.

Ex Find the least square fit by a line to the following three points in the plane:

x 1 2 3

y 0 0 6

Sol We want to find the line y = c0 + c1x that is closest to going through the three points,
(xi, yi), i = 1, 2, 3, i.e. such that 42

1 +42
2 +42

3 is as small as possible, where

4i = yi − (c0 + c1xi), i = 1, 2, 3

Or if we plug in the values of (xi, yi) and write it in matrix form we want to make the vector

4 =

 0
0
6

−
 1 1

1 2
1 3

[ c0
c1

]
= b− Ac,

as small as possible. (Note that the 1s in the matrix comes from that c0 is multiplied by 1.)
This is exactly a least square problem. The least square solution c∗ is the solution to the
normal equation ATAc∗ = ATb. The solution is (c0, c1)

T =(−4, 3)T.
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