
19. Lecture 19: 5.5: Inner products and Fourier series

Def An inner product on a vector space V is a function that for each pair of vectors gives
a real number: V 3 f ,g→ 〈f ,g〉 ∈ R, satisfying:

(i) 〈f , f〉 ≥ 0 with equality if and only if f = 0.
(ii) 〈f ,g〉 = 〈g, f〉.
(iii) 〈αf + βg,h〉 = α〈f ,h〉+ β〈g,h〉.

An inner product space is a vector space with an inner product.

Ex 1 x,y ∈ Rn and 〈x,y〉 = x ·y = x1y1 + · · ·+ xnyn.
Ex 2 x,y ∈ Rn and 〈x,y〉 = x1y1w1 + · · ·+ xnynwn, where wi > 0, for i = 1, ...., n.

Recall that the book uses the names linear space and elements for what traditionally is called
vector space and vectors. A function is not a vector in a traditional sense but thinking of it
as a vector one can use the methods developed for finite dimensional vector spaces.
One can think a continuous function f ∈ C[a, b] as a vector with infinitely many components
f(t), for every t ∈ [a, b]. One can think of a continuous function as approximated by its
values {f(t0), f(t1), . . . , f(tn)} at finitely many points t0<t1< · · ·<tn, (e.g. tk=a+k4t and
4t=(b−a)/n), or by polynomials of degree ≤n with the same values at these points.

Ex 3 f, g ∈ C[a, b], the continuous functions on the interval [a, b], and 〈f, g〉 =

∫ b

a

f(t)g(t) dt.

(ii) and (iii) in the definition are easy to check. (i) follows from using the fundamental
theorem of calculus. However it can also be seen from the definition of the Riemann integral
as a limit of Riemann sums∫ b

a

f(t)g(t) dt = lim
n→∞

n∑
k=1

f(tk)g(tk)4t = lim
n→∞


f(t1)
f(t2)

...
f(tn)

 ·

g(t1)
g(t2)

...
g(tn)

4t
Def f and g are called orthogonal if 〈f ,g〉 = 0.

Def The norm is defined to be ‖f‖ =
√
〈f , f〉.

Def The distance between f and g is defined to be dist(f ,g) = ‖f − g‖.

Note that Phytagorean theorem holds: ‖f + g‖2 = ‖f‖2 + ‖g‖2, if 〈f ,g〉 = 0.
This follows since ‖f + g‖2 = 〈f + g, f + g〉 = 〈f , f〉+ 〈g,g〉+ 〈f ,g〉+ 〈g, f〉 = ‖f‖2 + ‖g‖2.
Cauchy-Schwarz inequality also holds: |〈f ,g〉| ≤ ‖f‖ ‖g‖.
This follows from the Phytagorean theorem by writing f =〈f ,g〉〈g,g〉−1g+h, where 〈g,h〉=0.

Question Given f ∈C[a, b] which is the polynomial p∈Pn of degree≤n closest to f , i.e. so
dist(f, p)=‖f−p‖ is as small as possible, where the norm is from the inner product in Ex 3?

The orthogonal decomposition theorem Let W be a subspace of a vector space V and
let {g1, . . . ,gp} be an orthnormal basis for W. Any f ∈V can be written uniquely as

f = g + h, g ∈ W, h ∈ W⊥
where

g=projW f =〈f ,g1〉g1+ · · ·+〈f ,gp〉gp, and W⊥={h∈V; 〈h,g1〉=0, . . . ,〈h,gp〉=0}
are the orthogonal projection of f onto W respectively the orthogonal complement of W.

The best approximation theorem Let W be a subspace of a vector space V and f ∈ V .
Then the orthogonal projection projW f of f onto W is the vector in W closest to f , i.e.

‖f − projW f‖ < ‖f − g‖, for all g ∈ W, g 6= projW f .
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Ex 4 Find the polynomial P2 of degree ≤ 2 that best approximates the polynomial f(t) = t4

on the interval [−1, 1] in the inner product in Ex 3.
Sol An orthonormal basis for P2 in the inner product in Ex 3 can be found using Gram-
Schmidt to be p0 = 1/

√
2, p1 =

√
3/2 t, p2 = (3t2−1)

√
5/8. Then 〈f, p0〉 =

√
2/5, 〈f, p1〉 = 0

and 〈f, p2〉 =
(
3/7− 1/5

)√
5/2. Hence

projP2
(f)(t) = 〈f, p0〉p0(t) + 〈f, p1〉p1(t) + 〈f, p2〉p2(t) =

1

5
+
(3

7
− 1

5

)5

4
(3t2 − 1) =

6

7
t2 − 3

35
.

Fourier Series

Let Tn be the subspace of V = C[−π, π] spanned by all trigonometric polynomials up to
order n: 1, cos t, . . . , cosnt, sin t, . . . , sinnt, i.e. Tn consists of all functions of the form

a0
2

+ a1 cos t+ · · ·+ an cosnt+ b1 sin t+ · · ·+ bn sinnt

The basis vectors 1, cos t, . . . , cosnt, sin t, . . . , sinnt, are orthogonal to each other, i.e.∫ π

−π
cos kt sin `t dt = 0∫ π

−π
cos kt cos `t dt =

{
π, if k = `,

0, if k 6= `,∫ π

−π
sin kt sin `t dt =

{
π, if k = `,

0, if k 6= `,

Using Euler’s formulas, cos kt =
eikt + e−ikt

2
, sin kt =

eikt − e−ikt

2i
, the proof reduces to∫ π

−π
ei(k±`)t dt =

{
2π, if k ± ` = 0,

0, if k ± ` 6= 0,

The orthogonal projection of f onto Tn is given by

projTn(f) =
〈f , 1〉
〈1, 1〉

1 +
〈f , cos t〉
〈cos t, cos t〉

cos t+ · · ·+ 〈f , cosnt〉
〈cosnt, cosnt〉

cosnt

+
〈f , sin t〉
〈sin t, sin t〉

sin t+ · · ·+ 〈f , sinnt〉
〈sinnt, sinnt〉

sinnt

Ex 5 Expand the step function f(t)=

{
1, if t≥0

−1, if t<0
in a Fourier series on [−π, π].(/∈C[−π, π])

Since f(t) is an odd function and cos kt is an even function it follows that 〈f(t), cos kt〉 = 0.
Moreover since sin kt is an odd function we have

〈f(t), sin kt〉 =

∫ π

−π
f(t) sin kt dt = 2

∫ π

0

sin kt dt = −2

k
cos kt

∣∣∣π
0

= −2

k

(
(−1)k − 1

)
Hence the orthogonal projection of f onto Tn, where n is odd is given by

projTn(f) =
〈f , sin t〉
〈sin t, sin t〉

sin t+· · ·+ 〈f , sinnt〉
〈sinnt, sinnt〉

sinnt =
4

π
sin t+

4

3π
sin 3t+· · ·+ 4

nπ
sinnt
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Summary

Def An inner product on a vector space V is a function that for each pair of vectors gives
a real number: V 3 f ,g→ 〈f ,g〉 ∈ R, satisfying:
(i) 〈f , f〉 > 0 if f 6= 0, (ii) 〈f ,g〉 = 〈g, f〉, (iii) 〈αf + βg,h〉 = α〈f ,h〉+ β〈g,h〉.

Ex 1 x,y ∈ Rn and 〈x,y〉 = x ·y = x1y1 + · · ·+ xnyn.

One can think a continuous function f ∈ C[a, b] as a vector with infinitely many components
f(t), for every t ∈ [a, b]. One can think of a continuous function as approximated by its
values {f(t0), f(t1), . . . , f(tn)} at finitely many points t0<t1< · · ·<tn, (e.g. tk=a+k4t and
4t=(b−a)/n), or by polynomials of degree ≤n with the same values at these points.

Ex 3 f, g ∈ C[a, b], the continuous functions on the interval [a, b], and 〈f, g〉 =

∫ b

a

f(t)g(t) dt.

The Riemann integral is a limit of Riemann sums∫ b

a

f(t)g(t) dt = lim
n→∞

∑n

k=1
f(tk)g(tk)4t = lim

n→∞


f(t1)
f(t2)

...
f(tn)

 ·

g(t1)
g(t2)

...
g(tn)

4t
Def f and g are called orthogonal if 〈f ,g〉 = 0.

Def The norm is defined to be ‖f‖ =
√
〈f , f〉.

Def The distance between f and g is defined to be dist(f ,g) = ‖f − g‖.

Question Given f ∈C[a, b] which is the polynomial p∈Pn of degree≤n closest to f , i.e. so
dist(f, p)=‖f−p‖ is as small as possible, where the norm is from the inner product in Ex 3?

The orthogonal decomposition theorem Let W be a subspace of a vector space V and
let {g1, . . . ,gp} be an orthnormal basis for W. Any f ∈V can be written uniquely as

f = g + h, g ∈ W, h ∈ W⊥
where

g=projW f =〈f ,g1〉g1+ · · ·+〈f ,gp〉gp, and W⊥={h∈V; 〈h,g1〉=0, . . . ,〈h,gp〉=0}
are the orthogonal projection of f onto W respectively the orthogonal complement of W.

The best approximation theorem Let W be a subspace of a vector space V and f ∈ V .
Then the orthogonal projection projW f of f onto W is the vector in W closest to f , i.e.

‖f − projW f‖ < ‖f − g‖, for all g ∈ W, g 6= projW f .

Fourier Series

Let Tn be the subspace of C[−π, π] spanned by all trigonometric polynomials of order ≤n:

pn(t) = a0/2 + a1 cos t+ · · ·+ an cosnt+ b1 sin t+ · · ·+ bn sinnt

The basis vectors 1, cos t, . . . , cosnt, sin t, . . . , sinnt, are orthonormal in 〈f, g〉= 1

π

∫ π

−π
f(t)g(t) dt.

If f ∈C[−π, π] then with ak = 〈f, cos kt〉 and bk = 〈f, sin kt〉 we have

‖f − pn‖ < ‖f − q‖, for all q ∈ Tn, q 6= pn.

Question When is f(t) = limn→∞ pn(t)?
Answer If f ∈C1[−π, π] (i.e. has a continuous derivative) then the sum converges pointwise.
If f ∈L2 i.e. ‖f‖ <∞ then the sum converges in L2, i.e. limn→∞ ‖f − pn‖ = 0.
The Fourier series for the step function in Ex 5 does not converge pointwise at the origin
because the step function is not continuous there but it converges in the integrated norm.
Proving these things requires a course in Analysis (advanced Calculus).
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