19. Lecture 19: 5.5: Inner products and Fourier series

Def An inner product on a vector space V is a function that for each pair of vectors gives a real number: $V \ni \mathbf{f}, \mathbf{g} \rightarrow\langle\mathbf{f}, \mathbf{g}\rangle \in \mathbf{R}$, satisfying:
(i) $\langle\mathbf{f}, \mathbf{f}\rangle \geq 0$ with equality if and only if $\mathbf{f}=0$.
(ii) $\langle\mathbf{f}, \mathbf{g}\rangle=\langle\mathbf{g}, \mathbf{f}\rangle$.
(iii) $\langle\alpha \mathbf{f}+\beta \mathbf{g}, \mathbf{h}\rangle=\alpha\langle\mathbf{f}, \mathbf{h}\rangle+\beta\langle\mathbf{g}, \mathbf{h}\rangle$.

An inner product space is a vector space with an inner product.
Ex $1 \mathbf{x}, \mathbf{y} \in \mathbf{R}^{n}$ and $\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x} \cdot \mathbf{y}=x_{1} y_{1}+\cdots+x_{n} y_{n}$.
Ex $2 \mathbf{x}, \mathbf{y} \in \mathbf{R}^{n}$ and $\langle\mathbf{x}, \mathbf{y}\rangle=x_{1} y_{1} w_{1}+\cdots+x_{n} y_{n} w_{n}$, where $w_{i}>0$, for $i=1, \ldots, n$.
Recall that the book uses the names linear space and elements for what traditionally is called vector space and vectors. A function is not a vector in a traditional sense but thinking of it as a vector one can use the methods developed for finite dimensional vector spaces.
One can think a continuous function $f \in C[a, b]$ as a vector with infinitely many components $f(t)$, for every $t \in[a, b]$. One can think of a continuous function as approximated by its values $\left\{f\left(t_{0}\right), f\left(t_{1}\right), \ldots, f\left(t_{n}\right)\right\}$ at finitely many points $t_{0}<t_{1}<\cdots<t_{n}$, (e.g. $t_{k}=a+k \Delta t$ and $\Delta t=(b-a) / n)$, or by polynomials of degree $\leq n$ with the same values at these points.
Ex $3 f, g \in C[a, b]$, the continuous functions on the interval $[a, b]$, and $\langle f, g\rangle=\int_{a}^{b} f(t) g(t) d t$. (ii) and (iii) in the definition are easy to check. (i) follows from using the fundamental theorem of calculus. However it can also be seen from the definition of the Riemann integral

$$
\begin{aligned}
& \text { as a limit of Riemann sums } \\
& \qquad \int_{a}^{b} f(t) g(t) d t=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(t_{k}\right) g\left(t_{k}\right) \Delta t=\lim _{n \rightarrow \infty}\left[\begin{array}{c}
f\left(t_{1}\right) \\
f\left(t_{2}\right) \\
\vdots \\
f\left(t_{n}\right)
\end{array}\right] \cdot\left[\begin{array}{c}
g\left(t_{1}\right) \\
g\left(t_{2}\right) \\
\vdots \\
g\left(t_{n}\right)
\end{array}\right] \Delta t \\
& \text { Def } \mathbf{f} \text { and } \mathbf{g} \text { are called orthogonal if }\langle\mathbf{f}, \mathbf{g}\rangle=0 .
\end{aligned}
$$

Def The norm is defined to be $\|\mathbf{f}\|=\sqrt{\langle\mathbf{f}, \mathbf{f}\rangle}$.
Def The distance between \mathbf{f} and \mathbf{g} is defined to be $\operatorname{dist}(\mathbf{f}, \mathbf{g})=\|\mathbf{f}-\mathbf{g}\|$.
Note that Phytagorean theorem holds: $\|\mathbf{f}+\mathbf{g}\|^{2}=\|\mathbf{f}\|^{2}+\|\mathbf{g}\|^{2}$, if $\langle\mathbf{f}, \mathbf{g}\rangle=0$.
This follows since $\|\mathbf{f}+\mathbf{g}\|^{2}=\langle\mathbf{f}+\mathbf{g}, \mathbf{f}+\mathbf{g}\rangle=\langle\mathbf{f}, \mathbf{f}\rangle+\langle\mathbf{g}, \mathbf{g}\rangle+\langle\mathbf{f}, \mathbf{g}\rangle+\langle\mathbf{g}, \mathbf{f}\rangle=\|\mathbf{f}\|^{2}+\|\mathbf{g}\|^{2}$.
Cauchy-Schwarz inequality also holds: $|\langle\mathbf{f}, \mathbf{g}\rangle| \leq\|\mathbf{f}\|\|\mathbf{g}\|$.
This follows from the Phytagorean theorem by writing $\mathbf{f}=\langle\mathbf{f}, \mathbf{g}\rangle\langle\mathbf{g}, \mathbf{g}\rangle^{-1} \mathbf{g}+\mathbf{h}$, where $\langle\mathbf{g}, \mathbf{h}\rangle=0$.
Question Given $f \in C[a, b]$ which is the polynomial $p \in P_{n}$ of degree $\leq n$ closest to f, i.e. so $\operatorname{dist}(f, p)=\|\mathbf{f}-\mathbf{p}\|$ is as small as possible, where the norm is from the inner product in Ex 3 ?

The orthogonal decomposition theorem Let W be a subspace of a vector space V and let $\left\{\mathbf{g}_{1}, \ldots, \mathbf{g}_{p}\right\}$ be an orthnormal basis for W. Any $\mathbf{f} \in V$ can be written uniquely as
where

$$
\mathbf{f}=\mathbf{g}+\mathbf{h}, \quad \mathbf{g} \in W, \quad \mathbf{h} \in W^{\perp}
$$

$$
\mathbf{g}=\operatorname{proj}_{W} \mathbf{f}=\left\langle\mathbf{f}, \mathbf{g}_{1}\right\rangle \mathbf{g}_{1}+\cdots+\left\langle\mathbf{f}, \mathbf{g}_{p}\right\rangle \mathbf{g}_{p}, \quad \text { and } \quad W^{\perp}=\left\{\mathbf{h} \in V ;\left\langle\mathbf{h}, \mathbf{g}_{1}\right\rangle=0, \ldots,\left\langle\mathbf{h}, \mathbf{g}_{p}\right\rangle=0\right\}
$$

are the orthogonal projection of \mathbf{f} onto W respectively the orthogonal complement of W.
The best approximation theorem Let W be a subspace of a vector space V and $\mathbf{f} \in V$. Then the orthogonal projection $\operatorname{proj}_{W} \mathbf{f}$ of \mathbf{f} onto W is the vector in W closest to \mathbf{f}, i.e.

$$
\left\|\mathbf{f}-\operatorname{proj}_{W} \mathbf{f}\right\|<\|\mathbf{f}-\mathbf{g}\|, \quad \text { for all } \quad \mathbf{g} \in W, \quad \mathbf{g} \neq \operatorname{proj}_{W} \mathbf{f}
$$

Ex 4 Find the polynomial P_{2} of degree ≤ 2 that best approximates the polynomial $f(t)=t^{4}$ on the interval $[-1,1]$ in the inner product in Ex 3.
Sol An orthonormal basis for P_{2} in the inner product in Ex 3 can be found using GramSchmidt to be $p_{0}=1 / \sqrt{2}, p_{1}=\sqrt{3 / 2} t, p_{2}=\left(3 t^{2}-1\right) \sqrt{5 / 8}$. Then $\left\langle f, p_{0}\right\rangle=\sqrt{2} / 5,\left\langle f, p_{1}\right\rangle=0$ and $\left\langle f, p_{2}\right\rangle=(3 / 7-1 / 5) \sqrt{5 / 2}$. Hence

$$
\operatorname{proj}_{P_{2}}(f)(t)=\left\langle f, p_{0}\right\rangle p_{0}(t)+\left\langle f, p_{1}\right\rangle p_{1}(t)+\left\langle f, p_{2}\right\rangle p_{2}(t)=\frac{1}{5}+\left(\frac{3}{7}-\frac{1}{5}\right) \frac{5}{4}\left(3 t^{2}-1\right)=\frac{6}{7} t^{2}-\frac{3}{35} .
$$

Fourier Series

Let T_{n} be the subspace of $V=C[-\pi, \pi]$ spanned by all trigonometric polynomials up to order $n: 1, \cos t, \ldots, \cos n t, \sin t, \ldots, \sin n t$, i.e. T_{n} consists of all functions of the form

$$
\frac{a_{0}}{2}+a_{1} \cos t+\cdots+a_{n} \cos n t+b_{1} \sin t+\cdots+b_{n} \sin n t
$$

The basis vectors $1, \cos t, \ldots, \cos n t, \sin t, \ldots, \sin n t$, are orthogonal to each other, i.e.

$$
\begin{gathered}
\int_{-\pi}^{\pi} \cos k t \sin \ell t d t=0 \\
\int_{-\pi}^{\pi} \cos k t \cos \ell t d t= \begin{cases}\pi, & \text { if } k=\ell, \\
0, & \text { if } k \neq \ell,\end{cases} \\
\int_{-\pi}^{\pi} \sin k t \sin \ell t d t= \begin{cases}\pi, & \text { if } k=\ell, \\
0, & \text { if } k \neq \ell,\end{cases}
\end{gathered}
$$

Using Euler's formulas, $\cos k t=\frac{e^{i k t}+e^{-i k t}}{2}, \sin k t=\frac{e^{i k t}-e^{-i k t}}{2 i}$, the proof reduces to

$$
\int_{-\pi}^{\pi} e^{i(k \pm \ell) t} d t= \begin{cases}2 \pi, & \text { if } k \pm \ell=0 \\ 0, & \text { if } k \pm \ell \neq 0\end{cases}
$$

The orthogonal projection of f onto T_{n} is given by

$$
\left.\begin{array}{rl}
\operatorname{proj}_{T_{n}}(\mathbf{f})=\frac{\langle\mathbf{f}, 1\rangle}{\langle 1,1\rangle} 1+\frac{\langle\mathbf{f}, \cos t\rangle}{\langle\cos t, \cos t\rangle} \cos t & +\cdots
\end{array}\right) \frac{\langle\mathbf{f}, \cos n t\rangle}{\langle\cos n t, \cos n t\rangle} \cos n t \quad \begin{aligned}
& +\frac{\langle\mathbf{f}, \sin t\rangle}{\langle\sin t, \sin t\rangle} \sin t+\cdots+\frac{\langle\mathbf{f}, \sin n t\rangle}{\langle\sin n t, \sin n t\rangle} \sin n t
\end{aligned}
$$

Ex 5 Expand the step function $f(t)=\left\{\begin{array}{ll}1, & \text { if } t \geq 0 \\ -1, & \text { if } t<0\end{array}\right.$ in a Fourier series on $[-\pi, \pi] .(\notin C[-\pi, \pi])$
Since $f(t)$ is an odd function and $\cos k t$ is an even function it follows that $\langle f(t), \cos k t\rangle=0$. Moreover since $\sin k t$ is an odd function we have

$$
\langle f(t), \sin k t\rangle=\int_{-\pi}^{\pi} f(t) \sin k t d t=2 \int_{0}^{\pi} \sin k t d t=-\left.\frac{2}{k} \cos k t\right|_{0} ^{\pi}=-\frac{2}{k}\left((-1)^{k}-1\right)
$$

Hence the orthogonal projection of f onto T_{n}, where n is odd is given by

$$
\operatorname{proj}_{T_{n}}(\mathbf{f})=\frac{\langle\mathbf{f}, \sin t\rangle}{\langle\sin t, \sin t\rangle} \sin t+\cdots+\frac{\langle\mathbf{f}, \sin n t\rangle}{\langle\sin n t, \sin n t\rangle} \sin n t=\frac{4}{\pi} \sin t+\frac{4}{3 \pi} \sin 3 t+\cdots+\frac{4}{n \pi} \sin n t
$$

Summary

Def An inner product on a vector space V is a function that for each pair of vectors gives a real number: $V \ni \mathbf{f}, \mathbf{g} \rightarrow\langle\mathbf{f}, \mathbf{g}\rangle \in \mathbf{R}$, satisfying:
(i) $\langle\mathbf{f}, \mathbf{f}\rangle>0$ if $\mathbf{f} \neq 0$, (ii) $\langle\mathbf{f}, \mathbf{g}\rangle=\langle\mathbf{g}, \mathbf{f}\rangle$, (iii) $\langle\alpha \mathbf{f}+\beta \mathbf{g}, \mathbf{h}\rangle=\alpha\langle\mathbf{f}, \mathbf{h}\rangle+\beta\langle\mathbf{g}, \mathbf{h}\rangle$.

Ex $1 \mathbf{x}, \mathbf{y} \in \mathbf{R}^{n}$ and $\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x} \cdot \mathbf{y}=x_{1} y_{1}+\cdots+x_{n} y_{n}$.
One can think a continuous function $f \in C[a, b]$ as a vector with infinitely many components $f(t)$, for every $t \in[a, b]$. One can think of a continuous function as approximated by its values $\left\{f\left(t_{0}\right), f\left(t_{1}\right), \ldots, f\left(t_{n}\right)\right\}$ at finitely many points $t_{0}<t_{1}<\cdots<t_{n}$, (e.g. $t_{k}=a+k \Delta t$ and $\Delta t=(b-a) / n)$, or by polynomials of degree $\leq n$ with the same values at these points.
Ex $3 f, g \in C[a, b]$, the continuous functions on the interval $[a, b]$, and $\langle f, g\rangle=\int_{a}^{b} f(t) g(t) d t$. The Riemann integral is a limit of Riemann sums

$$
\begin{aligned}
& \text { The Riemann integral is a limit of Riemann sums } \\
& \qquad \int_{a}^{b} f(t) g(t) d t=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(t_{k}\right) g\left(t_{k}\right) \Delta t=\lim _{n \rightarrow \infty}\left[\begin{array}{c}
f\left(t_{1}\right) \\
f\left(t_{2}\right) \\
\vdots \\
f\left(t_{n}\right)
\end{array}\right] \cdot\left[\begin{array}{c}
g\left(t_{1}\right) \\
g\left(t_{2}\right) \\
\vdots \\
g\left(t_{n}\right)
\end{array}\right] \Delta t \\
& \text { Def } \mathbf{f} \text { and } \mathbf{g} \text { are called orthogonal if }\langle\mathbf{f}, \mathbf{g}\rangle=0 .
\end{aligned}
$$

Def The norm is defined to be $\|\mathbf{f}\|=\sqrt{\langle\mathbf{f}, \mathbf{f}\rangle}$.
Def The distance between \mathbf{f} and \mathbf{g} is defined to be $\operatorname{dist}(\mathbf{f}, \mathbf{g})=\|\mathbf{f}-\mathbf{g}\|$.
Question Given $f \in C[a, b]$ which is the polynomial $p \in P_{n}$ of degree $\leq n$ closest to f, i.e. so $\operatorname{dist}(f, p)=\|\mathbf{f}-\mathbf{p}\|$ is as small as possible, where the norm is from the inner product in Ex 3?
The orthogonal decomposition theorem Let W be a subspace of a vector space V and let $\left\{\mathbf{g}_{1}, \ldots, \mathbf{g}_{p}\right\}$ be an orthnormal basis for W. Any $\mathbf{f} \in V$ can be written uniquely as
where

$$
\mathbf{f}=\mathbf{g}+\mathbf{h}, \quad \mathbf{g} \in W, \quad \mathbf{h} \in W^{\perp}
$$

$$
\mathbf{g}=\operatorname{proj}_{W} \mathbf{f}=\left\langle\mathbf{f}, \mathbf{g}_{1}\right\rangle \mathbf{g}_{1}+\cdots+\left\langle\mathbf{f}, \mathbf{g}_{p}\right\rangle \mathbf{g}_{p}, \quad \text { and } \quad W^{\perp}=\left\{\mathbf{h} \in V ;\left\langle\mathbf{h}, \mathbf{g}_{1}\right\rangle=0, \ldots,\left\langle\mathbf{h}, \mathbf{g}_{p}\right\rangle=0\right\}
$$

are the orthogonal projection of \mathbf{f} onto W respectively the orthogonal complement of W.
The best approximation theorem Let W be a subspace of a vector space V and $\mathbf{f} \in V$. Then the orthogonal projection $\operatorname{proj}_{W} \mathbf{f}$ of \mathbf{f} onto W is the vector in W closest to \mathbf{f}, i.e.

$$
\left\|\mathbf{f}-\operatorname{proj}_{W} \mathbf{f}\right\|<\|\mathbf{f}-\mathbf{g}\|, \quad \text { for all } \quad \mathbf{g} \in W, \quad \mathbf{g} \neq \operatorname{proj}_{W} \mathbf{f}
$$

Fourier Series

Let T_{n} be the subspace of $C[-\pi, \pi]$ spanned by all trigonometric polynomials of order $\leq n$:

$$
p_{n}(t)=a_{0} / 2+a_{1} \cos t+\cdots+a_{n} \cos n t+b_{1} \sin t+\cdots+b_{n} \sin n t
$$

The basis vectors $1, \cos t, \ldots, \cos n t, \sin t, \ldots, \sin n t$, are orthonormal in $\langle f, g\rangle=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) g(t) d t$. If $f \in C[-\pi, \pi]$ then with $a_{k}=\langle f, \cos k t\rangle$ and $b_{k}=\langle f, \sin k t\rangle$ we have

$$
\left\|f-p_{n}\right\|<\|f-q\|, \quad \text { for all } \quad q \in T_{n}, \quad q \neq p_{n}
$$

Question When is $f(t)=\lim _{n \rightarrow \infty} p_{n}(t)$?
Answer If $f \in C^{1}[-\pi, \pi]$ (i.e. has a continuous derivative) then the sum converges pointwise. If $f \in L^{2}$ i.e. $\|f\|<\infty$ then the sum converges in L^{2}, i.e. $\lim _{n \rightarrow \infty}\left\|f-p_{n}\right\|=0$.
The Fourier series for the step function in Ex 5 does not converge pointwise at the origin because the step function is not continuous there but it converges in the integrated norm. Proving these things requires a course in Analysis (advanced Calculus).

