
22. 6.3 Geometric Interpretation of Determinants

The magnitude of the determinant of a matrix A =
[
a1 · · · an

]
is the volume of the n-

dimensional parallelepiped with the column vectors as it edges
P (a1, . . . , an) = {x ∈ Rn; x = c1a1 + · · ·+ cnan, 0 ≤ c1 ≤ 1, . . . , 0 ≤ cn ≤ 1}:

| detA| = Vol
(
P
)

The sign of the determinant depends on the orientation of the column vectors.

In 2 and 3 dimensions it was proven in the multi-variable calculus classes that the magnitude
of the cross product of two vectors gives the area and the scalar triple product of three vec-
tors gives the volume. The sign is positive if the vectors form a positively oriented system.
The proof here is from Section 3.3 in the text by Lay et al. where there are pictures:

Th IfA is a 2×2 matrix, the area of the parallelogram with its columns as its sides is |detA|.
If A is a 3×3 matrix, the volume of the parallelogram with its columns as its edges is |detA|.
Pf of the 2× 2 cases. The theorem is obviously true for diagonal 2× 2 matrices:∣∣∣∣det

[
a 0
0 d

]∣∣∣∣ = |ad| = Area of rectangle with sides a and d

We will show that any 2 × 2 matrix A =
[
a1 a2

]
can be transformed into a diagonal

matrix in a way that changes neither the area of the associated parallelogram nor | detA|.
We know that the absolute value of the determinant is unchanged when two columns are
interchanged or a multiple of one column is added to another and its easy to see that one
can transform A into diagonal form with such operations. Column interchanges do not
change the parallelogram at all so it suffices to prove the following fact: The area of the
parallelogram determined by a1 and a2 equals the area of the parallelogram determined by
a1 and a2 + ca1 for any c. This follows from that the points a2 and a2 + ca1 have the same
perpendicular distance to the line through 0 and a1.
The proof in the 3 × 3 case is similar. It is obviously true in the diagonal case since it is
just a cube, and we will argue as before that the volume is unchanged if we add a multiple
of one row to another. A parallelepiped is a box with two sloping sides. Its volume is the
area of the base in the plane Span[a1, a3] times the altitude of a2 above Span[a1, a3]. Any
vector a2 + ca1 has the same altitude because a2 + ca1 lies in the plane a2 + Span[a1, a3],
which is parallel to Span[a1, a3]. Hence the volume of the parallelepiped is unchanged when
[a1, a2, a3] is changed to [a1, a2 + ca1, a3]. Thus a column replacement operation does not
affect the volume of the parallelepiped. Since column interchanges have no effect on the
volume, the proof is complete.

Limited Gauss-Jordon elimination

In the above we used that to get a matrix in row echelon form and diagonal form if it is
invertible it suffices to use two of the row operations:
I) Interchanging two rows changes the sign.
III) Add a multiple of one row to another does not change the determinant.
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Determinants of maps

Th Let T : R2 → R2 be the linear transformation T (x) = x, where A is a 2× 2 matrix. If
S is a parallelogram in R2, then

AreaT (S) = | detA|AreaS

If T is determined by a 3× 3 matrix A, and if S is a parallelepiped in R3, then

VolT (S) = | detA|VolS

By dividing up any area S into smaller squares the theorem holds for any area S.
Pf A parallelogram at the origin in R2 determined by vectors b1 and b2 has the form

S = {s1b1 + s2b2; 0 ≤ s1 ≤ 1, 0 ≤ s2 ≤ 1}
The image of S under T consists of points of the form

T (s1b1 + s2b2) = s1T (b1) + s2T (b2) = s1Ab1 + s2Ab2,

where 0 ≤ s1 ≤ 1, 0 ≤ s2 ≤ 1. It follows that T (S) is the parallelogram determined by the
columns of the matrix [Ab1Ab2]. This matrix can be written as AB, where B = [b1,b2].
By the of interpretation of the determinants as area and by the product theorem,

AreaT (S) = | detAB| = | detA| | detB| = | detA|AreaS
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Cramer’s rule

Th Let A be an invertible n× n matrix. For any b ∈ Rn, the unique solution x of Ax = b
has entries given by

xi = detAi(b)/ detA, i = 1, . . . , n,

where Ai(b) is the matrix obtained from A by replacing column i by the vector b.
Pf Denote the columns of A by a1, . . . , an and the columns of the n × n identity matrix I
by e1, . . . , en. If Ax = b, the definition of matrix multiplication shows that

Aİi(x) = A[e1 . . .x . . . en] = [Ae1 . . . Ax . . . Aen] = [a1 . . .b . . . an] = Ai(b).

By the multiplicative property of determinants,

detA det Ii(x) = detAi(b)

The second determinant on the left is simply xi.

A formula for the inverse using determinants

Cramer’s rule leads easily to a general formula for the inverse of an n×n matrix A. The jth
column of A−1 is a vector x that satisfies Ax = ej where ej is the jth column of the identity
matrix, and the ith entry of x is the (i, j)th-entry of A−1. By Cramer’s rule,

(i, j)th-entry of A−1 = xi = detAi(b)/ detA (22.1)

Recall that Aji denotes the submatrix of A formed by deleting row j and column i. A
cofactor expansion down column i of Ai(ej) shows that

detAi(ej) = (−1)i+j detAji = Cji,

where Cji is called a cofactor of A. By (22.1), the (i, j)th-entry of of A−1 is the cofactor Cji
divided by detA. [Note that the subscripts on Cji are the reverse of (i, j)] Thus

A−1 =
1

detA


C11 C21 · · · Cn1
C12 C22 · · · Cn2...

...
...

C1n C2n · · · Cnn


The matrix of cofactors on the right side above is called the adjugate (or classical adjoint)
of A, denoted by adjA.

Cofactor expansion

Let A=(aij) be an n×n matrix and let Aij denote the (n−1)×(n−1) matrix obtained from A by
deleting the row and column containing aij and let the cofactors be Cij =(−1)i+j det (Aij).
Th For any i and j we have

detA = ai1Ci1 + ...+ ainCin = a1jC1j + ...+ anjCnj.

Pf Since the determinant just changes sign if we switch two rows and the determinant of
the transpose is the same it suffices to prove that detA = a11C11 + ... + an1Cn1. Since the
determinant is linear in the rows and hence in the columns it suffices to prove it for the
case of ai1 = 1, for some i but aj1 = 0 for j 6= i. We can however reduce the case i > 1 to
the case of i = 1 by moving the ith row to the top passed each of the i − 1 rows above it.
Since it requires i − 1 switches to it would cause the determinant to changes sign with the
factor (−1)i−1, which is exactly how the sign would change when going from Ci1 to C11. It
therefore suffices to consider the case when a11 = 1 but aj1 = 0 for j > 1, which is exactly

the case of a block matrix for which we proven that det

[
1 ∗
0 A11

]
= detA11.
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Calculating determinants with row reduction and expansion along rows
or columns

Ex 1 Find the determinant of A =

 1 5 0
2 4 −1
0 −2 0

.

Sol Adding −2 times the 1st row to the 2nd and expanding along the first column:∣∣∣∣∣∣
1 5 0
2 4 −1
0 −2 0

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 5 0
0 −6 −1
0 −2 0

∣∣∣∣∣∣ = 1 ·
∣∣∣∣ −6 −1
−2 0

∣∣∣∣ = 1 ·
(
(−6)0− (−1)(−2)

)
= −2

Ex 2

∣∣∣∣∣∣∣∣
2 0 2 2
1 0 2 2
1 2 2 2
1 0 1 2

∣∣∣∣∣∣∣∣ = 2

∣∣∣∣∣∣∣∣
1 0 1 1
1 0 2 2
1 2 2 2
1 0 1 2

∣∣∣∣∣∣∣∣ = 2

∣∣∣∣∣∣∣∣
1 0 1 1
0 0 1 1
0 2 1 1
0 0 0 1

∣∣∣∣∣∣∣∣ = 2

∣∣∣∣∣∣
0 1 1
2 1 1
0 0 1

∣∣∣∣∣∣
= −2

∣∣∣∣∣∣
2 1 1
0 1 1
0 0 1

∣∣∣∣∣∣ = (−2)2

∣∣∣∣ 1 1
0 1

∣∣∣∣ = (−2)2(1 · 1− 1 · 0) = −4.
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Summary

The magnitude of the determinant of a matrix A =
[
a1 · · · an

]
is the volume of the n-

dimensional parallelepiped with the column vectors as it edges
P (a1, . . . , an) = {x ∈ Rn; x = c1a1 + · · ·+ cnan, 0 ≤ c1 ≤ 1, . . . , 0 ≤ cn ≤ 1}:∣∣ detA

∣∣ = Vol
(
P
)

The sign of the determinant depends on the orientation of the column vectors.
Th IfA is a 2×2 matrix, the area of the parallelogram with its columns as its sides is |detA|.
If A is a 3×3 matrix, the volume of the parallelogram with its columns as its edges is |detA|.
The proof use that to get a matrix in row echelon form, and diagonal form if it is invertible,
it suffices to use two of the row operations:
I) Interchanging two rows changes the sign.
III) Add a multiple of one row to another does not change the determinant.
As a consequence of the theorem we have:
Th Let T : R2 → R2 be the linear transformation determined by a 2× 2 matrix A. If S is
a parallelogram in R2, then

AreaT (S) = | detA|AreaS

If T is determined by a 3× 3 matrix A, and if S is a parallelepiped in R3, then

VolT (S) = | detA|VolS

One typically calculates determinants either with row operations or Cofactor expansion
Let A=(aij) be an n×n matrix and let Aij denote the (n−1)×(n−1) matrix obtained from A by
deleting the row and column containing aij, and let the cofactors be Cij = (−1)i+j det (Aij).
The determinant satisfy

detA = a11C11 + ...+ a1nC1n.

By switching rows and taking the transpose we get:
Th For any i and j we have

detA = ai1Ci1 + ...+ ainCin = a1jC1j + ...+ anjCnj.

We have already seen that this is true in the 3 dimensional case. In general it is clear from

detA =
∑

σ
a1σ(1)a2σ(2) · · · anσ(n) sign (σ),

that the terms are the same so we just need the sign right, see Theorem 6.2.10, Problem 68.

Th (Cramer’s rule) Let A be an invertible n × n matrix. For any b ∈ Rn, the unique
solution x of Ax = b has entries given by

xi = detAi(b)/ detA, i = 1, . . . , n,

where Ai(b) is the matrix obtained from A by replacing column i by the vector b. Moreover

A−1 =
1

detA


C11 C21 · · · Cn1
C12 C22 · · · Cn2...

...
...

C1n C2n · · · Cnn
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