## 23. Lecture 23 Diagonalization

Ex 1 In a certain town, $30 \%$ of the married men get divorced each year and $20 \%$ of the single men get married each year. Suppose that initially there are 8000 married men and 2000 single men. What is the proportion of married as $k \rightarrow \infty$ ?
Sol Let

$$
\mathbf{w}_{k}=\left[\begin{array}{l}
w_{k 1} \\
w_{k 2}
\end{array}\right]=\left[\begin{array}{c}
\text { number of married men after } k \text { years } \\
\text { number of single men after } k \text { years }
\end{array}\right] .
$$

Let $A$ be the $2 \times 2$ matrix such that

$$
\mathbf{w}_{k+1}=A \mathbf{w}_{k}
$$

$$
\begin{gathered}
A=\left[\begin{array}{cc}
\text { proportion of married } & \begin{array}{c}
\text { proportion of single } \\
\text { that stays married in a year } \\
\text { proportion of married }
\end{array}
\end{array} \begin{array}{c}
\text { that gets married in a year } \\
\text { proportion of single } \\
\text { that gets divorced in a year }
\end{array}\right]=\left[\begin{array}{ll}
0.7 & 0.2 \\
0.3 & 0.8
\end{array}\right] . \\
\mathbf{w}_{0}=\left[\begin{array}{l}
8000 \\
2000
\end{array}\right] . \text { After the first year we get } \mathbf{w}_{1}=A \mathbf{w}_{0}=\left[\begin{array}{ll}
0.7 & 0.2 \\
0.3 & 0.8
\end{array}\right]\left[\begin{array}{l}
8000 \\
2000
\end{array}\right]=\left[\begin{array}{l}
6000 \\
4000
\end{array}\right] .
\end{gathered}
$$ After the second year we get $\mathbf{w}_{2}=A \mathbf{w}_{1}=A^{2} \mathbf{w}_{0}$ and so on:

$$
\mathbf{w}_{k}=A^{k} \mathbf{w}_{0}
$$

It seems like as $k \rightarrow \infty, \mathbf{w}_{k}$ converges: $\mathbf{w}_{10}=\left[\begin{array}{c}4004 \\ 5996\end{array}\right], \mathbf{w}_{20}=\left[\begin{array}{l}4000 \\ 6000\end{array}\right], \mathbf{w}_{30}=\left[\begin{array}{l}4000 \\ 6000\end{array}\right]$.
In fact, any initial condition will converge to the steady state $(4000,6000)^{T}$, for which the number of divorces $0.3 \cdot 4000$ is equal to the number of marriages $0.2 \cdot 6000$. If we start with $\mathbf{x}_{1}=(2,3)^{T}$ proportional to the steady state we get back $\mathbf{x}_{1}$ :

$$
A \mathbf{x}_{1}=\left[\begin{array}{ll}
0.7 & 0.2 \\
0.3 & 0.8
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\mathbf{x}_{1}
$$

There is another vector $\mathbf{x}_{2}=(-1,1)^{T}$ that $A$ acts on by simply multiplying by $1 / 2$ :

$$
A \mathbf{x}_{2}=\left[\begin{array}{ll}
0.7 & 0.2 \\
0.3 & 0.8
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 / 2 \\
1 / 2
\end{array}\right]=\frac{1}{2} \mathbf{x}_{2}
$$

The vectors $\mathbf{x}_{1}, \mathbf{x}_{2}$ form a basis so we can write our initial condition in terms of these:

Then as $k \rightarrow \infty$

$$
\mathbf{w}_{0}=\left[\begin{array}{l}
8000 \\
2000
\end{array}\right]=2000\left[\begin{array}{l}
2 \\
3
\end{array}\right]-4000\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=2000 \mathbf{x}_{1}-4000 \mathbf{x}_{2}
$$

$$
\mathbf{w}_{k}=A^{k} \mathbf{w}_{0}=2000 A^{k} \mathbf{x}_{1}-4000 A^{k} \mathbf{x}_{2}=2000 \mathbf{x}_{1}-4000 \frac{1}{2^{k}} \mathbf{x}_{2} \rightarrow 2000 \mathbf{x}_{1}=\left[\begin{array}{l}
4000 \\
6000
\end{array}\right]
$$

A scalar $\lambda$ such that $A \mathbf{x}=\lambda \mathbf{x}$ for some $\mathbf{x} \neq 0$ is called an eigenvalue and a corresponding vector $\mathbf{x}$ is called an eigenvector.

We just calculated $A^{k} \mathbf{x}$ for large $k$ using the eigenvalues and eigenvectors.
We express $\mathbf{x}=c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}$ in terms of the basis of eigenvectors $A \mathbf{x}_{i}=\lambda_{i} \mathbf{x}_{i}, i=1,2$.
Change of coordinates $\mathbf{x}=P\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]$, where $P=\left[\begin{array}{cc}1 & 1 \\ \mathbf{x}_{1} & \mathbf{x}_{2} \\ 1 & 1\end{array}\right]$, so $\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=P^{-1} \mathbf{x}$.
Then $A^{k} \mathbf{x}=c_{1} \lambda_{1}^{k} \mathbf{x}_{1}+c_{1} \lambda_{2}^{k} \mathbf{x}_{2}=\left[\begin{array}{cc}\mathbf{x}_{1} & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{cc}\lambda_{1}^{k} & 0 \\ 0 & \lambda_{2}^{k}\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=P D^{k} P^{-1} \mathbf{x}$, where $D=\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right]$.
Hence $A=P D P^{-1}$ and $A^{k}=\left(P D P^{-1}\right)^{k}=P D P^{-1} P D P^{-1} \cdots P D P^{-1}=P D^{k} P^{-1}$.

## Eigenvectors

A scalar $\lambda$ such that $A \mathbf{x}=\lambda \mathbf{x}$ for some $\mathbf{x} \neq 0$ is called an eigenvalue and a corresponding vector $\mathbf{x}$ is called an eigenvector.

Ex 2 Let $L$ be the line in $\mathbf{R}^{2}$ that is spanned by the vector $\left[\begin{array}{l}3 \\ 1\end{array}\right]$.
Let $T$ be the linear transformation that projects any vector orthogonally onto $L$.
The matrix for $T$ in the standard coordinate system is $A=\frac{1}{10}\left[\begin{array}{ll}9 & 3 \\ 3 & 1\end{array}\right]$.
Find the eigenvectors and eigenvalues.
Sol Since the projection leaves the line invariant the vector $\mathbf{x}_{1}=\left[\begin{array}{l}3 \\ 1\end{array}\right]$ must be an eigenvector with eigenvalue 1: $A \mathbf{x}_{1}=\mathbf{x}_{1}$. Moreover, since the orthogonal vector $\mathbf{x}_{2}=\left[\begin{array}{c}-1 \\ 3\end{array}\right]$ is mapped to $\mathbf{0}$ its also an eigenvector with eigenvalue 0 : $A \mathbf{x}_{2}=\mathbf{0}=0 \cdot \mathbf{x}_{2}$.

If we express If $\mathbf{x}=c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}$, in terms of the basis of eigenvectors then $A \mathbf{x}=c_{1} \mathbf{x}_{1}$. Change of coordinates $\mathbf{x}=P\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]$, where $P=\left[\mathbf{x}_{1} \mathbf{x}_{2}\right]=\left[\begin{array}{cc}3 & -1 \\ 1 & 3\end{array}\right]$, and $\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=P^{-1} \mathbf{x}$, where $P^{-1}=\frac{1}{10}\left[\begin{array}{cc}3 & 1 \\ -1 & 3\end{array}\right]$.
Hence $A \mathbf{x}=c_{1} \mathbf{x}_{1}=\left[\begin{array}{ll}\mathbf{x}_{1} & \mathbf{x}_{2}\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=P D P^{-1}$, where $D=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$.
The matrix $D$ for $T$ in the $\mathcal{B}=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$ coordinate system is hence very simple.
The matrix for $A$ for $T$ in the standard coordinates is more complicated. The following diagram commute

$$
\begin{gathered}
c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}=\mathbf{x} \xrightarrow{A} \quad \begin{array}{c}
A \mathbf{x}=c_{1} \mathbf{x}_{1} \\
P \uparrow \\
\uparrow P
\end{array}, \\
{\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{x}
\end{array}\right]_{\mathcal{B}} \xrightarrow{D}[A \mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{c}
c_{1} \\
0
\end{array}\right]}
\end{gathered}
$$

Ex 3 Let $T$ be the linear transformation rotating a vector an angle $\theta$. The matrix for $T$ is $A=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$. Find the eigenvectors and eigenvalues of $T$.
Sol Unless $\theta$ is a multiple of $\pi$ it does not have any real eigenvalues and eigenvectors. If $\theta$ is a multiply of $\pi$ the eigenvalues are $\pm 1$.

## SUMMARY

Ex 1 In a certain town $30 \%$ of the married men get divorced each year and $20 \%$ of the single men get married each year. Suppose that initially there are 8000 married men and 2000 single men. What is the proportion of married as $k \rightarrow \infty$ ?
Sol Let

$$
\mathbf{w}_{k}=\left[\begin{array}{c}
w_{k 1} \\
w_{k 2}
\end{array}\right]=\left[\begin{array}{c}
\text { married after } k \text { years } \\
\text { single after } k \text { years }
\end{array}\right] .
$$

Let $A$ be the $2 \times 2$ matrix such that

$$
\begin{gathered}
\text { atrix such that } \\
\mathbf{w}_{k+1}=A \mathbf{w}_{k},
\end{gathered} A=\left[\begin{array}{cc}
0.7 & 0.2 \\
0.3 & 0.8
\end{array}\right], \quad \mathbf{w}_{0}=\left[\begin{array}{l}
8000 \\
2000
\end{array}\right]
$$

As $k \rightarrow \infty \mathbf{w}_{k} \rightarrow\left[\begin{array}{l}4000 \\ 6000\end{array}\right]$. This is a steady state solution. If $\mathbf{x}_{1}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$ have

$$
A \mathbf{x}_{1}=\left[\begin{array}{ll}
0.7 & 0.2 \\
0.3 & 0.8
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\mathbf{x}_{1}
$$

There is another vector $\mathbf{x}_{2}=(-1,1)^{T}$ that $A$ acts on by simply multiplying by $1 / 2$ :

$$
A \mathbf{x}_{2}=\left[\begin{array}{ll}
0.7 & 0.2 \\
0.3 & 0.8
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 / 2 \\
1 / 2
\end{array}\right]=\frac{1}{2} \mathbf{x}_{2}
$$

The vectors $\mathbf{x}_{1}, \mathbf{x}_{2}$ form a basis so we can write our initial condition in terms of these:

Then as $k \rightarrow \infty$

$$
\mathbf{w}_{0}=\left[\begin{array}{l}
8000 \\
2000
\end{array}\right]=2000\left[\begin{array}{l}
2 \\
3
\end{array}\right]-4000\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=2000 \mathbf{x}_{1}-4000 \mathbf{x}_{2} .
$$

$$
\mathbf{w}_{k}=A^{k} \mathbf{w}_{0}=2000 A^{k} \mathbf{x}_{1}-4000 A^{k} \mathbf{x}_{2}=2000 \mathbf{x}_{1}-4000 \frac{1}{2^{k}} \mathbf{x}_{2} \rightarrow 2000 \mathbf{x}_{1}=\left[\begin{array}{l}
4000 \\
6000
\end{array}\right]
$$

A scalar $\lambda$ such that $A \mathbf{x}=\lambda \mathbf{x}$ for some $\mathbf{x} \neq 0$ is called an eigenvalue and a corresponding vector $\mathbf{x}$ is called an eigenvector.
We just calculated $A^{k} \mathbf{x}$ for large $k$ using the eigenvalues and eigenvectors.
We express $\mathbf{x}=c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}$ in terms of the basis of eigenvectors $A \mathbf{x}_{i}=\lambda_{i} \mathbf{x}_{i}, i=1,2$.
Change of coordinates $\mathbf{x}=P\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]$, where $P=\left[\begin{array}{cc}1 & 1 \\ \mathbf{x}_{1} & \mathbf{x}_{2} \\ 1 & 1\end{array}\right]$, so $\left[\begin{array}{c}c_{1} \\ c_{2}\end{array}\right]=P^{-1} \mathbf{x}$.
Then $A^{k} \mathbf{x}=c_{1} \lambda_{1}^{k} \mathbf{x}_{1}+c_{1} \lambda_{2}^{k} \mathbf{x}_{2}=\left[\begin{array}{cc}1 & 1 \\ \mathbf{x}_{1} & \mathbf{x}_{2} \\ 1 & 1\end{array}\right]\left[\begin{array}{cc}\lambda_{1}^{k} & 0 \\ 0 & \lambda_{2}^{k}\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=P D^{k} P^{-1} \mathbf{x}$, where $D=\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right]$.
Hence $A=P D P^{-1}$ and $A^{k}=\left(P D P^{-1}\right)^{k}=P D P^{-1} P D P^{-1} \cdots P D P^{-1}=P D^{k} P^{-1}$.
Ex 2 Let $L$ be the line in $\mathbf{R}^{2}$ that is spanned by the vector $\left[\begin{array}{l}3 \\ 1\end{array}\right]$.
Let $T$ be the linear transformation that projects any vector orthogonally onto $L$.
The matrix for $T$ in the standard coordinate system is $A=\frac{1}{10}\left[\begin{array}{ll}9 & 3 \\ 3 & 1\end{array}\right]$.
Find the eigenvectors and eigenvalues.
Sol Since the projection leaves the line invariant the vector $\mathbf{x}_{1}=\left[\begin{array}{l}3 \\ 1\end{array}\right]$ must be an eigenvector with eigenvalue 1: $A \mathbf{x}_{1}=\mathbf{x}_{1}$. Moreover, since the orthogonal vector $\mathbf{x}_{2}=\left[\begin{array}{c}-1 \\ 3\end{array}\right]$ is mapped to $\mathbf{0}$ its also an eigenvector with eigenvalue 0: $A \mathbf{x}_{2}=\mathbf{0}=0 \cdot \mathbf{x}_{2}$.

