23. Lecture 23 Diagonalization

Ex 1 In a certain town, 30% of the married men get divorced each year and 20% of the single men get married each year. Suppose that initially there are 8000 married men and 2000 single men. What is the proportion of married as $k \to \infty$?

Sol Let $\mathbf{w}_k = \begin{bmatrix} w_{k1} \\ w_{k2} \end{bmatrix} = \begin{bmatrix} \text{number of married men after } k \text{ years} \\ \text{number of single men after } k \text{ years} \end{bmatrix}$. Let A be the 2 × 2 matrix such that $\mathbf{w}_{k+1} = A\mathbf{w}_k$, $A = \begin{bmatrix} \text{proportion of married} & \text{proportion of single} \\ \text{that stays married in a year} & \text{that gets married in a year} \\ \text{proportion of married} & \text{proportion of single} \\ \text{that gets divorced in a year} & \text{that stays single in a year} \end{bmatrix} = \begin{bmatrix} 0.7 & 0.2 \\ 0.3 & 0.8 \end{bmatrix}$ $\mathbf{w}_0 = \begin{bmatrix} 8000 \\ 2000 \end{bmatrix}$. After the first year we get $\mathbf{w}_1 = A\mathbf{w}_0 = \begin{bmatrix} 0.7 & 0.2 \\ 0.3 & 0.8 \end{bmatrix} \begin{bmatrix} 8000 \\ 2000 \end{bmatrix} = \begin{bmatrix} 6000 \\ 4000 \end{bmatrix}$.

After the second year we get $\mathbf{w}_2 = A\mathbf{w}_1 = A^2\mathbf{w}_0$ and so on:

It seems like as
$$k \to \infty$$
, \mathbf{w}_k converges: $\mathbf{w}_{10} = \begin{bmatrix} 4004 \\ 5996 \end{bmatrix}$, $\mathbf{w}_{20} = \begin{bmatrix} 4000 \\ 6000 \end{bmatrix}$, $\mathbf{w}_{30} = \begin{bmatrix} 4000 \\ 6000 \end{bmatrix}$.
In fact, any initial condition will converge to the **steady state** $(4000, 6000)^T$, for which the number of divorces $0.3 \cdot 4000$ is equal to the number of marriages $0.2 \cdot 6000$. If we start with $\mathbf{x}_1 = (2,3)^T$ proportional to the steady state we get back \mathbf{x}_1 :

 $\mathbf{w} = A^k \mathbf{w}$

$$A\mathbf{x}_1 = \begin{bmatrix} 0.7 & 0.2\\ 0.3 & 0.8 \end{bmatrix} \begin{bmatrix} 2\\ 3 \end{bmatrix} = \begin{bmatrix} 2\\ 3 \end{bmatrix} = \mathbf{x}_1$$

There is another vector $\mathbf{x}_2 = (-1, 1)^T$ that A acts on by simply multiplying by 1/2:

$$A\mathbf{x}_2 = \begin{bmatrix} 0.7 & 0.2\\ 0.3 & 0.8 \end{bmatrix} \begin{bmatrix} -1\\ 1 \end{bmatrix} = \begin{bmatrix} -1/2\\ 1/2 \end{bmatrix} = \frac{1}{2}\mathbf{x}_2$$

The vectors \mathbf{x}_1 , \mathbf{x}_2 form a basis so we can write our initial condition in terms of these:

$$\mathbf{w}_0 = \begin{bmatrix} 8000\\2000 \end{bmatrix} = 2000 \begin{bmatrix} 2\\3 \end{bmatrix} - 4000 \begin{bmatrix} -1\\1 \end{bmatrix} = 2000\mathbf{x}_1 - 4000\mathbf{x}_2.$$

Then as $k \to \infty$

$$\mathbf{w}_{k} = A^{k} \mathbf{w}_{0} = 2000 A^{k} \mathbf{x}_{1} - 4000 A^{k} \mathbf{x}_{2} = 2000 \mathbf{x}_{1} - 4000 \frac{1}{2^{k}} \mathbf{x}_{2} \to 2000 \mathbf{x}_{1} = \begin{bmatrix} 4000\\6000 \end{bmatrix}$$

A scalar λ such that $A\mathbf{x} = \lambda \mathbf{x}$ for some $\mathbf{x} \neq 0$ is called an **eigenvalue** and a corresponding vector \mathbf{x} is called an **eigenvector**.

We just calculated $A^k \mathbf{x}$ for large k using the eigenvalues and eigenvectors. We express $\mathbf{x} = c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2$ in terms of the basis of eigenvectors $A\mathbf{x}_i = \lambda_i \mathbf{x}_i$, i = 1, 2. Change of coordinates $\mathbf{x} = P\begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$, where $P = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 \\ \mathbf{x}_1 & \mathbf{x}_2 \end{bmatrix}$, so $\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = P^{-1} \mathbf{x}$. Then $A^k \mathbf{x} = c_1 \lambda_1^k \mathbf{x}_1 + c_1 \lambda_2^k \mathbf{x}_2 = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 \\ \mathbf{x}_1 & \mathbf{x}_2 \end{bmatrix} \begin{bmatrix} \lambda_1^k & 0 \\ 0 & \lambda_2^k \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = PD^k P^{-1} \mathbf{x}$, where $D = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$. Hence $A = PDP^{-1}$ and $A^k = (PDP^{-1})^k = PDP^{-1}PDP^{-1} \cdots PDP^{-1} = PD^kP^{-1}$.

EIGENVECTORS

A scalar λ such that $A\mathbf{x} = \lambda \mathbf{x}$ for some $\mathbf{x} \neq 0$ is called an **eigenvalue** and a corresponding vector \mathbf{x} is called an **eigenvector**.

Ex 2 Let *L* be the line in \mathbb{R}^2 that is spanned by the vector $\begin{bmatrix} 3\\1 \end{bmatrix}$. Let *T* be the linear transformation that projects any vector orthogonally onto *L*. The matrix for *T* in the standard coordinate system is $A = \frac{1}{10} \begin{bmatrix} 9 & 3\\ 3 & 1 \end{bmatrix}$. Find the eigenvectors and eigenvalues.

Sol Since the projection leaves the line invariant the vector $\mathbf{x}_1 = \begin{bmatrix} 3\\1 \end{bmatrix}$ must be an eigenvector with eigenvalue 1: $A\mathbf{x}_1 = \mathbf{x}_1$. Moreover, since the orthogonal vector $\mathbf{x}_2 = \begin{bmatrix} -1\\3 \end{bmatrix}$ is mapped to **0** its also an eigenvector with eigenvalue 0: $A\mathbf{x}_2 = \mathbf{0} = 0 \cdot \mathbf{x}_2$.

If we express If $\mathbf{x} = c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2$, in terms of the basis of eigenvectors then $A\mathbf{x} = c_1 \mathbf{x}_1$. Change of coordinates $\mathbf{x} = P \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$, where $P = \begin{bmatrix} \mathbf{x}_1 \mathbf{x}_2 \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ 1 & 3 \end{bmatrix}$, and $\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = P^{-1}\mathbf{x}$, where $P^{-1} = \frac{1}{10} \begin{bmatrix} 3 & 1 \\ -1 & 3 \end{bmatrix}$. Hence $A\mathbf{x} = c_1 \mathbf{x}_1 = \begin{bmatrix} \mathbf{x}_1 \mathbf{x}_2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = PDP^{-1}$, where $D = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$.

The matrix D for T in the $\mathcal{B} = {\mathbf{x}_1, \mathbf{x}_2}$ coordinate system is hence very simple. The matrix for A for T in the standard coordinates is more complicated. The following diagram commute

Ex 3 Let *T* be the linear transformation rotating a vector an angle θ . The matrix for *T* is $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$. Find the eigenvectors and eigenvalues of *T*. **Sol** Unless θ is a multiple of π it does not have any real eigenvalues and eigenvectors. If θ

is a multiply of π the eigenvalues are ± 1 .

SUMMARY

Ex 1 In a certain town 30% of the married men get divorced each year and 20% of the single men get married each year. Suppose that initially there are 8000 married men and 2000 single men. What is the proportion of married as $k \to \infty$?

Sol Let
$$\mathbf{w}_{k} = \begin{bmatrix} w_{k1} \\ w_{k2} \end{bmatrix} = \begin{bmatrix} \text{married after } k \text{ years} \\ \text{single after } k \text{ years} \end{bmatrix}$$
.
Let A be the 2×2 matrix such that $\mathbf{w}_{k+1} = A\mathbf{w}_{k}, \qquad A = \begin{bmatrix} 0.7 & 0.2 \\ 0.3 & 0.8 \end{bmatrix}, \qquad \mathbf{w}_{0} = \begin{bmatrix} 8000 \\ 2000 \end{bmatrix}$
As $k \to \infty \mathbf{w}_{k} \to \begin{bmatrix} 4000 \\ 6000 \end{bmatrix}$. This is a **steady state solution**. If $\mathbf{x}_{1} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ have $A\mathbf{x}_{1} = \begin{bmatrix} 0.7 & 0.2 \\ 0.3 & 0.8 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \mathbf{x}_{1}$

There is another vector $\mathbf{x}_2 = (-1, 1)^T$ that A acts on by simply multiplying by 1/2:

$$A\mathbf{x}_2 = \begin{bmatrix} 0.7 & 0.2\\ 0.3 & 0.8 \end{bmatrix} \begin{bmatrix} -1\\ 1 \end{bmatrix} = \begin{bmatrix} -1/2\\ 1/2 \end{bmatrix} = \frac{1}{2}\mathbf{x}_2$$

The vectors $\mathbf{x}_1, \, \mathbf{x}_2$ form a basis so we can write our initial condition in terms of these:

$$\mathbf{w}_0 = \begin{bmatrix} 8000\\2000 \end{bmatrix} = 2000 \begin{bmatrix} 2\\3 \end{bmatrix} - 4000 \begin{bmatrix} -1\\1 \end{bmatrix} = 2000\mathbf{x}_1 - 4000\mathbf{x}_2.$$

Then as $k \to \infty$

$$\mathbf{w}_{k} = A^{k}\mathbf{w}_{0} = 2000A^{k}\mathbf{x}_{1} - 4000A^{k}\mathbf{x}_{2} = 2000\mathbf{x}_{1} - 4000\frac{1}{2^{k}}\mathbf{x}_{2} \to 2000\mathbf{x}_{1} = \begin{bmatrix} 4000\\6000 \end{bmatrix}.$$

A scalar λ such that $A\mathbf{x} = \lambda \mathbf{x}$ for some $\mathbf{x} \neq 0$ is called an **eigenvalue** and a corresponding vector \mathbf{x} is called an **eigenvector**.

We just calculated $A^k \mathbf{x}$ for large k using the eigenvalues and eigenvectors. We express $\mathbf{x} = c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2$ in terms of the basis of eigenvectors $A\mathbf{x}_i = \lambda_i \mathbf{x}_i$, i = 1, 2. Change of coordinates $\mathbf{x} = P \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$, where $P = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 \\ \mathbf{x}_1 & \mathbf{x}_2 \end{bmatrix}$, so $\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = P^{-1} \mathbf{x}$. Then $A^k \mathbf{x} = c_1 \lambda_1^k \mathbf{x}_1 + c_1 \lambda_2^k \mathbf{x}_2 = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 \\ \mathbf{x}_1 & \mathbf{x}_2 \end{bmatrix} \begin{bmatrix} \lambda_1^k & 0 \\ 0 & \lambda_2^k \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = PD^k P^{-1} \mathbf{x}$, where $D = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$. Hence $A = PDP^{-1}$ and $A^k = (PDP^{-1})^k = PDP^{-1}PDP^{-1} \cdots PDP^{-1} = PD^kP^{-1}$.

Ex 2 Let *L* be the line in \mathbb{R}^2 that is spanned by the vector $\begin{bmatrix} 3\\1 \end{bmatrix}$. Let *T* be the linear transformation that projects any vector orthogonally onto *L*. The matrix for *T* in the standard coordinate system is $A = \frac{1}{10} \begin{bmatrix} 9 & 3\\ 3 & 1 \end{bmatrix}$. Find the eigenvectors and eigenvalues.

Sol Since the projection leaves the line invariant the vector $\mathbf{x}_1 = \begin{bmatrix} 3\\1 \end{bmatrix}$ must be an eigenvector with eigenvalue 1: $A\mathbf{x}_1 = \mathbf{x}_1$. Moreover, since the orthogonal vector $\mathbf{x}_2 = \begin{bmatrix} -1\\3 \end{bmatrix}$ is mapped to **0** its also an eigenvector with eigenvalue 0: $A\mathbf{x}_2 = \mathbf{0} = 0 \cdot \mathbf{x}_2$.