24. Lecture 24 7.2-3 Eigenvalues and Eigenvectors

Let A be an $n \times n$ matrix. A vector $\mathbf{x} \neq \mathbf{0}$ is called an eigenvector and λ an eigenvalue if

$$
A \mathbf{x}=\lambda \mathbf{x}
$$

i.e. multiplication with A acts in a very simple way on \mathbf{x}. The goal is to find n linearly independent eigenvectors

$$
A \mathbf{x}_{k}=\lambda_{k} \mathbf{x}_{k}, \quad k=1, \ldots, n
$$

If $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$ form a basis then any vector \mathbf{x} can be expressed in term of them and so the matrix A is completely determined by its action on the n eigenvectors:

$$
A\left(c_{1} \mathbf{x}_{1}+\cdots+c_{n} \mathbf{x}_{n}\right)=c_{1} A \mathbf{x}_{1}+\cdots+c_{n} A \mathbf{x}_{n}=c_{1} \lambda_{1} \mathbf{x}_{1}+\cdots+c_{n} \lambda_{n} \mathbf{x}_{n}
$$

A scalar λ is an eigenvalue if and only if there is $\mathbf{x} \neq \mathbf{0}$ such that

$$
(A-\lambda I) \mathbf{x}=\mathbf{0}
$$

The set of all solutions $E_{\lambda}=\operatorname{Ker}(A-\lambda I)$ is called the eigenspace corresponding to eigenvalue λ. Existence of a nontrivial solution is equivalent to that $A-\lambda I$ is not invertible which is equivalent to

$$
p_{A}(\lambda) \equiv \operatorname{det}(A-\lambda I)=0
$$

The characteristic polynomial $p_{A}(\lambda)$ for the matrix A, is a polynomial of degree n, and its roots are exactly the eigenvalues of A.
In the case of 2×2 matrices $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ then
$p_{A}(\lambda)=\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}a-\lambda & b \\ c & d-\lambda\end{array}\right|=(a-\lambda)(d-\lambda)-b c=\lambda^{2}-(a+d) \lambda+(a d-b c)$
The sum of the diagonal elements of a square matrix $A=\left(a_{i j}\right)$ is called the trace $\operatorname{Tr} A=$ $a_{11}+\ldots a_{n n}$. In case of a 2×2 matrix we have

$$
p_{A}(\lambda)=\operatorname{det}(A-\lambda I)=\lambda^{2}-(\operatorname{Tr} A) \lambda+\operatorname{det} A
$$

In the case of $n \times n$

$$
p_{A}(\lambda)=\operatorname{det}(A-\lambda I)=(-1)^{n} \lambda^{n}+(-1)^{n-1}(\operatorname{Tr} A) \lambda^{n-1}+\cdots+\operatorname{det} A
$$

Th If $p_{A}(\lambda)$ has n different real roots then A has n different linearly independent eigenvectors.

Ex 1 Find the eigenvalues and eigenvectors of $A=\left[\begin{array}{cc}1 & -2 \\ -2 & 1\end{array}\right]$.
Sol The eigenvalues are solution of the characteristic equation:
$\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}1-\lambda & -2 \\ -2 & 1-\lambda\end{array}\right|=(1-\lambda)^{2}-2^{2}=(1-\lambda-2)(1-\lambda+2)=0$
The eigenvalues are $\lambda_{1}=-1, \lambda_{2}=3$. The eigenvectors are solutions to $\left(A-\lambda_{i}\right) \mathbf{x}_{i}=\mathbf{0}$:

$$
\begin{gathered}
\left(A-\lambda_{1} I\right) \mathbf{x}_{1}=\left[\begin{array}{cc}
2 & -2 \\
-2 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad \Leftrightarrow \quad \begin{array}{c}
2 x_{1}-2 x_{2}=0 \\
-2 x_{1}+2 x_{2}=0
\end{array} \quad \Leftrightarrow \quad \mathbf{x}_{1}=\alpha\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
\left(A-\lambda_{2} I\right) \mathbf{x}_{2}=\left[\begin{array}{ll}
-2 & -2 \\
-2 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad \Leftrightarrow \quad \begin{array}{c}
-2 x_{1}-2 x_{2}=0 \\
-2 x_{1}-2 x_{2}=0
\end{array} \Leftrightarrow \quad \Leftrightarrow \quad \mathbf{x}_{2}=\beta\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
\end{gathered}
$$

Ex 2 Find the eigenvalues and eigenvectors of $A=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$.
Sol This is the matrix for a rotation $A=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$, with an angle $\theta=\pi / 4$ and can not have any real eigenvectors unless the rotation a multiple of π.
The eigenvalues are solution of:
$\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}-\lambda & 1 \\ -1 & -\lambda\end{array}\right|=\lambda^{2}+1^{2}=(\lambda-i)(\lambda+i)=0$, i.e. $\lambda_{1}=i$, or $\lambda_{2}=-i$.
Ex 3 Find the eigenvalues and eigenvectors of $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$.
Sol The eigenvalues are solution of the characteristic equation:
$\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}-\lambda & 1 \\ 0 & -\lambda\end{array}\right|=\lambda^{2}=0$
The eigenvalues are $\lambda_{1}=\lambda_{2}=0$. The eigenvectors are solutions to $A \mathbf{x}=\mathbf{0}$:

$$
\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Leftrightarrow y=0
$$

so the only linearly independent eigenvector is $\mathbf{x}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$.

Ex 4 Find the eigenvalues and eigenspaces of $A=\left[\begin{array}{ccc}2 & 0 & 0 \\ -1 & 3 & 1 \\ -1 & 1 & 3\end{array}\right]$.
Sol Expanding along the first row

$$
p_{A}(\lambda)=\left|\begin{array}{ccc}
2-\lambda & 0 & 0 \\
-1 & 3-\lambda & 1 \\
-1 & 1 & 3-\lambda
\end{array}\right|=(2-\lambda)\left|\begin{array}{cc}
3-\lambda & 1 \\
1 & 3-\lambda
\end{array}\right|=(2-\lambda)\left((3-\lambda)^{2}-1\right)
$$

Characteristic polynomial $(2-\lambda)^{2}(4-\lambda)$.
$A-2 I=\left[\begin{array}{ccc}2 & 0 & 0 \\ -1 & 3 & 1 \\ -1 & 1 & 3\end{array}\right]-\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]=\left[\begin{array}{ccc}0 & 0 & 0 \\ -1 & 1 & 1 \\ -1 & 1 & 1\end{array}\right]$ and $(A-2 I) \mathbf{x}=\mathbf{0}$ has augmented
matrix $\left[\begin{array}{cccc}0 & 0 & 0 & 0 \\ -1 & 1 & 1 & 0 \\ -1 & 1 & 1 & 0\end{array}\right] \sim\left[\begin{array}{cccc}1 & -1 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \quad \Leftrightarrow \quad x_{1}-x_{2}-x_{3}=0$ and hence $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=$
$\left[\begin{array}{c}x_{2}+x_{3} \\ x_{2} \\ x_{3}\end{array}\right]=x_{2}\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ span the eigenspace.
$A-4 I=\left[\begin{array}{ccc}-2 & 0 & 0 \\ -1 & -1 & 1 \\ -1 & 1 & -1\end{array}\right]$, augmented matrix $\left[\begin{array}{cccc}-2 & 0 & 0 & 0 \\ -1 & -1 & 1 & 0 \\ -1 & 1 & -1 & 0\end{array}\right] \sim\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \Leftrightarrow$ $\left\{\begin{array}{l}x_{1}=0, \\ x_{2}-x_{3}=0\end{array} \quad\right.$ and hence $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}0 \\ x_{3} \\ x_{3}\end{array}\right]=x_{3}\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$.

Def We say that an eigenvalue λ_{0} has algebraic multiplicity k if λ_{0} is a root of multiplicity k of the characteristic polynomial $p_{A}(\lambda)$, meaning that we can write

$$
p_{A}(\lambda)=\left(\lambda_{0}-\lambda\right)^{k} g(\lambda),
$$

for some polynomial $g(\lambda)$ with $g\left(\lambda_{0}\right) \neq 0$. We write almu $\left(\lambda_{0}\right)=k$.
Def Consider an eigenvalue λ. Then the kernel of $A-\lambda I$ is called the Eigenspace of A and denoted

$$
E_{\lambda}=\operatorname{Ker}(A-\lambda I)
$$

Def The geometric multiplicity of an eigenvalue is the dimension of the corresponding Eigenspace.

Th The geometric multiplicity is always less than or equal to the algebraic multiplicity.

SUMMARY

Let A be an $n \times n$ matrix. A vector $\mathbf{x} \neq \mathbf{0}$ is called an eigenvector and λ an eigenvalue if

$$
A \mathbf{x}=\lambda \mathbf{x}
$$

i.e. multiplication with A acts in a very simple way on \mathbf{x}. The goal is to find n linearly independent eigenvectors

$$
A \mathbf{x}_{k}=\lambda_{k} \mathbf{x}_{k}, \quad k=1, \ldots, n
$$

If $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$ form a basis then any vector \mathbf{x} can be expressed in term of them and so the matrix A is completely determined by its action on the n eigenvectors:

$$
A\left(c_{1} \mathbf{x}_{1}+\cdots+c_{n} \mathbf{x}_{n}\right)=c_{1} A \mathbf{x}_{1}+\cdots+c_{n} A \mathbf{x}_{n}=c_{1} \lambda_{1} \mathbf{x}_{1}+\cdots+c_{n} \lambda_{n} \mathbf{x}_{n} .
$$

A scalar λ is an eigenvalue if and only if there is $\mathbf{x} \neq \mathbf{0}$ such that

$$
(A-\lambda I) \mathbf{x}=\mathbf{0}
$$

The set of all solutions $E_{\lambda}=\operatorname{Ker}(A-\lambda I)$ is called the eigenspace corresponding to eigenvalue λ. Existence of a nontrivial solution is equivalent to that $A-\lambda I$ is not invertible which is equivalent to

$$
p_{A}(\lambda) \equiv \operatorname{det}(A-\lambda I)=0
$$

The characteristic polynomial $p_{A}(\lambda)$ for the matrix A, is a polynomial of degree n, and its roots are exactly the eigenvalues of A.
Th If $p_{A}(\lambda)$ has n different real roots then A has n different linearly independent eigenvectors.
Ex 1 If $A=\left[\begin{array}{cc}1 & -2 \\ -2 & 1\end{array}\right]$ then $p_{A}(\lambda)=\left|\begin{array}{cc}1-\lambda & -2 \\ -2 & 1-\lambda\end{array}\right|=(1+\lambda)(\lambda-3)$, so $\lambda_{1}=-1, \lambda_{2}=3$.
The eigenvectors are solutions to $\left(A-\lambda_{i}\right) \mathbf{x}_{i}=\mathbf{0}$:

$$
\begin{gathered}
\left(A-\lambda_{1} I\right) \mathbf{x}_{1}=\left[\begin{array}{cc}
2 & -2 \\
-2 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad \Leftrightarrow \quad \begin{array}{c}
2 x_{1}-2 x_{2}=0 \\
-2 x_{1}+2 x_{2}=0
\end{array} \quad \Leftrightarrow \quad \mathbf{x}_{1}=\alpha\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
\left(A-\lambda_{2} I\right) \mathbf{x}_{2}=\left[\begin{array}{ll}
-2 & -2 \\
-2 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad \Leftrightarrow \quad \begin{array}{l}
-2 x_{1}-2 x_{2}=0 \\
-2 x_{1}-2 x_{2}=0
\end{array} \quad \Leftrightarrow \quad \mathbf{x}_{2}=\beta\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
\end{gathered}
$$

Ex $2 A=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ corresponds to a rotation $\pi / 2$ so it has no eigenvectors and $p_{A}(\lambda)=\lambda^{2}+1$.
Ex 3 If $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ then $p_{A}(\lambda)=\lambda^{2}$. It has only one linearly independent eigenvector

$$
\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad \Leftrightarrow \quad x_{2}=0 \quad \Leftrightarrow \quad \mathbf{x}=\alpha\left[\begin{array}{l}
1 \\
0
\end{array}\right] .
$$

Ex 4 If $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ then $p_{A}(\lambda)=(1-\lambda)^{2}$ and every vector is an eigenvector with eigenvalue 1.

Def An eigenvalue λ_{0} has algebraic multiplicity k for some polynomial g if

$$
p_{A}(\lambda)=\left(\lambda_{0}-\lambda\right)^{k} g(\lambda), \quad \text { where } \quad g\left(\lambda_{0}\right) \neq 0 .
$$

Def The geometric multiplicity of an eigenvalue λ is the dimension of its Eigenspace:

$$
E_{\lambda}=\operatorname{Ker}(A-\lambda I)
$$

Th The geometric multiplicity is always less than or equal to the algebraic multiplicity.

