25. Lecture 25 7.3 Eigenvectors

We will show that some square matrices A can be factorized $A=S D S^{-1}$, where D is diagonal (i.e. the entries off the main diagonal are all zeros).
This can be used to compute A^{k}, for large k, which is useful in the applications.
(If multiplying by A represents the evolution of a system during one time unit then multiplying by A^{k} represents the evolution after k time units)

Ex Let $D=\left[\begin{array}{ll}5 & 0 \\ 0 & 4\end{array}\right]$. Compute D^{2}, D^{3} and D^{k}.
Sol $D^{2}=\left[\begin{array}{ll}5 & 0 \\ 0 & 4\end{array}\right]\left[\begin{array}{ll}5 & 0 \\ 0 & 4\end{array}\right]=\left[\begin{array}{cc}5^{2} & 0 \\ 0 & 4^{2}\end{array}\right], D^{3}=D D^{2}=\left[\begin{array}{ll}5 & 0 \\ 0 & 4\end{array}\right]\left[\begin{array}{cc}5^{2} & 0 \\ 0 & 4^{2}\end{array}\right]=\left[\begin{array}{cc}5^{3} & 0 \\ 0 & 4^{3}\end{array}\right], D^{k}=\left[\begin{array}{cc}5^{k} & 0 \\ 0 & 4^{k}\end{array}\right]$.
Ex Let $A=\left[\begin{array}{cc}6 & -1 \\ 2 & 3\end{array}\right]$. Compute A^{k}. Use that $A=S D S^{-1}$, where $D=\left[\begin{array}{ll}5 & 0 \\ 0 & 4\end{array}\right], S=\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]$, $S^{-1}=\left[\begin{array}{cc}2 & -1 \\ -1 & 1\end{array}\right]$. Sol We have $A^{2}=S D S^{-1} S D S^{-1}=S D I D S^{-1}=S D^{2} S^{-1}, \ldots$, so

$$
A^{k}=S D^{k} S^{-1}=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{cc}
5^{k} & 0 \\
0 & 4^{k}
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{cc}
2 \cdot 5^{k}-4^{k} & -5^{k}+4^{k} \\
2 \cdot 5^{k}-2 \cdot 4^{k}-5^{k}+2 \cdot 4^{k}
\end{array}\right] .
$$

A square matrix A is called diagonalizable if it can be written $A=S D S^{-1}$, where D is diagonal and S is invertible. When is A diagonalizable and if it is how do we find D and S ? The answer lies in the eigenvalues and eigenvectors. Note that

$$
\left[\begin{array}{cc}
6 & -1 \\
2 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=5\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad\left[\begin{array}{cc}
6 & -1 \\
2 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=4\left[\begin{array}{l}
1 \\
2
\end{array}\right] .
$$

so the columns of S are made out of the eigenvectors of A and the diagonal entries of D are the eigenvalues of A. We can put this to equations together in one matrix equation:

$$
\left[\begin{array}{cc}
6 & -1 \\
2 & 3
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]=\left[\begin{array}{ll}
5 & 4 \\
5 & 8
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{ll}
5 & 0 \\
0 & 4
\end{array}\right],
$$

i.e.

$$
\left[\begin{array}{cc}
6 & -1 \\
2 & 3
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{ll}
5 & 0 \\
0 & 4
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]^{-1},
$$

In general if A is an $n \times n$ matrix with n linearly independent eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ and eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ then

$$
\begin{aligned}
& \qquad A\left[\begin{array}{cc}
\mid & \mid \\
\mathbf{v}_{1} & \cdots \\
\mid & \\
\mid & \mathbf{v}_{n}
\end{array}\right]=\left[\begin{array}{ccc}
\mid & & \mid \\
A \mathbf{v}_{1} \cdots & A \mathbf{v}_{n} \\
\mid & & \mid
\end{array}\right]=\left[\begin{array}{ccc}
\mid & & \mid \\
\lambda_{1} \mathbf{v}_{1} \cdots & \lambda_{n} \mathbf{v}_{n} \\
\mid & & \mid
\end{array}\right]=\left[\begin{array}{ccc}
\mid & \mid \\
\mathbf{v}_{1} & \cdots & \mathbf{v}_{n} \\
\mid & \mid
\end{array}\right]\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \lambda_{n}
\end{array}\right] \\
& \text { and hence }
\end{aligned}
$$

$$
A=\left[\begin{array}{cc}
\mid & \\
\mathbf{v}_{1} \cdots & \mid \\
\mid & \\
\mid & \mid
\end{array}\right]\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \lambda_{n}
\end{array}\right]\left[\begin{array}{cc}
\mid & \mid \\
\mathbf{v}_{1} \cdots & \mathbf{v}_{n} \\
\mid & \mid
\end{array}\right]^{-1}
$$

We have hence proven:
Diagonalization Theorem An $n \times n$ matrix is diagonalizable A if and only if it has n linearly independent eigenvectors.

Ex If possible, diagonalize $A=\left[\begin{array}{ccc}2 & 0 & 0 \\ 1 & 2 & 1 \\ -1 & 0 & 1\end{array}\right]$.
Sol The eigenvalues $\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}2-\lambda & 0 & 0 \\ 1 & 2-\lambda & 1 \\ -1 & 0 & 1-\lambda\end{array}\right|=(2-\lambda)^{2}(1-\lambda)=0$.
Basis for $\lambda=1: \mathbf{v}_{1}=\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right]$.
Basis for $\lambda=2: \mathbf{v}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$.
Construct $P=\left[\begin{array}{lll}\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}\end{array}\right]=\left[\begin{array}{ccc}0 & 0 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right], D=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right] . A=P D P^{-1}$.
Ex If possible, diagonalize $A=\left[\begin{array}{lll}2 & 4 & 6 \\ 0 & 2 & 2 \\ 0 & 0 & 4\end{array}\right]$.
Sol The eigenvalues $\operatorname{det}(A-\lambda I)=(\lambda-2)^{2}(\lambda-4)=0$.
Basis for $\lambda=2: \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$.
Basis for $\lambda=4: \mathbf{v}_{2}=\left[\begin{array}{l}5 \\ 1 \\ 1\end{array}\right]$.
There are not three linearly independent eigenvectors so A can not be diagonalized.

Th If $\lambda_{1}, \ldots, \lambda_{n}$ are distinct eigenvalues of an $n \times n$ matrix A with corresponding eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$, then $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly independent.
Pf We argue by contradiction. Let $k \leq n$ be the smallest integer so that $c_{1} \mathbf{v}_{1}+\ldots c_{k} \mathbf{v}_{k}=0$ for some combination with some $c_{k} \neq 0$. Then multiplying with $\left(A-\lambda_{k} I\right)$ gives $c_{1}\left(\lambda_{1}-\right.$ $\left.\lambda_{k}\right) \mathbf{v}_{1}+\ldots c_{k}\left(\lambda_{k}-\lambda_{k}\right) \mathbf{v}_{k}=0$, and since $\left(\lambda_{i}-\lambda_{k}\right) \neq 0$, for $i<k$ it follows that we have a linear combination with few vectors, which contradicts our assumption.

Th If A is symmetric matrix $A^{T}=A$ then A has n linearly independent Eigenvectors. We will study diagonalization for symmetric matrices in the next chapter so we postpone the proof.

Th If B is similar to A, i.e. $B=S^{-1} A S$ then A and B have the same characteristic polynomial and hence the same eigenvalues.
Pf Since we can write $I=S^{-1} S=S^{-1} I S$ we get

$$
\begin{aligned}
\operatorname{det}(B-\lambda I)=\operatorname{det}\left(S^{-1} A S-\lambda S^{-1} I S\right)= & \operatorname{det}\left(S^{-1}(A-\lambda I) S\right) \\
& =\operatorname{det} S^{-1} \operatorname{det}(A-\lambda I) \operatorname{det} S=\operatorname{det}(A-\lambda I)
\end{aligned}
$$

by the product rules for determinants: $(\operatorname{det}(C D)=\operatorname{det} C \operatorname{det} D)$.
This theorem says something very important; that the eigenvalues does not depend on in which coordinate system we view a linear transformation, and hence describe some fundamental property of the linear transformation.

Def The geometric multiplicity of an eigenvalue λ_{0} is the dimension of the eigenspace $E_{\lambda_{0}}=\operatorname{Ker}\left(A-\lambda_{0} I\right)$. The algebraic multiplicity is the integer k such that $p_{A}(\lambda)=$ $\left(\lambda-\lambda_{0}\right)^{k} g(\lambda)$, where g is a polynomial with $g\left(\lambda_{0}\right) \neq 0$.

Th The geometric multiplicity is less than or equal to the algebraic multiplicity.
Pf Suppose λ_{0} is an eigenvalue of an $n \times n$ matrix A with multiplicity m. Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ be a basis for $E_{\lambda_{0}}$. Let S be an invertible matrix with the first m columns consisting of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ (You can find such a matrix by letting the remaining columns be a basis for the orthogonal complement of the first m columns.) Then $B=S^{-1} A S$ is similar to A. We compute $B \mathbf{e}_{i}=S^{-1} A S \mathbf{e}_{i}=S^{-1} A \mathbf{v}_{i}=\lambda_{0} S^{-1} \mathbf{v}_{i}=\lambda_{0} \mathbf{e}_{i}$. It follows that B is a block matrix of the form $B=\left[\begin{array}{cc}\lambda_{0} I & P \\ 0 & Q\end{array}\right]$, where I in the $m \times m$ identity matrix. By the previous theorem $p_{A}(\lambda)=p_{B}(\lambda)$. But because of the block structure of B we have $\operatorname{det}(B-\lambda I)=\operatorname{det}\left(\lambda_{0} I-\lambda I\right) \operatorname{det}(Q-\lambda I)=\left(\lambda_{0}-\lambda\right)^{m} \operatorname{det}(Q-\lambda I)$. Hence $m \leq k$, where k is the algebraic multiplicity.

Summary

A square matrix A is called diagonalizable if $A=S D S^{-1}$, for some S where D is diagonal.
Th An $n \times n$ matrix A is diagonalizable if and only if it has n linearly independent eigenvectors.
If A is an $n \times n$ matrix with n linearly independent eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ and eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ then

$$
\begin{aligned}
& A\left[\begin{array}{cc}
\mid & \mid \\
\mathbf{v}_{1} & \cdots \\
\mid & \\
\mathbf{v}_{n}
\end{array}\right]=\left[\begin{array}{ccc}
\mid & & \mid \\
A \mathbf{v}_{1} \cdots & A \mathbf{v}_{n} \\
\mid & & \mid
\end{array}\right]=\left[\begin{array}{ccc}
\mid & & \mid \\
\lambda_{1} \mathbf{v}_{1} & \cdots & \lambda_{n} \mathbf{v}_{n} \\
\mid & & \mid
\end{array}\right]=\left[\begin{array}{ccc}
\mid & \mid \\
\mathbf{v}_{1} & \cdots & \mathbf{v}_{n} \\
\mid & \mid
\end{array}\right]\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \lambda_{n}
\end{array}\right] \\
& \text { and hence }
\end{aligned}
$$

$$
A=\left[\begin{array}{cc}
\mid & \\
\mathbf{v}_{1} \cdots & \mid \\
\mid & \\
\mid & \\
\mathbf{v}_{n}
\end{array}\right]\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \lambda_{n}
\end{array}\right]\left[\begin{array}{cc}
\mid & \mid \\
\mathbf{v}_{1} \cdots & \cdots \mathbf{v}_{n} \\
\mid & \mid
\end{array}\right]^{-1}
$$

Th If $\lambda_{1}, \ldots, \lambda_{n}$ are distinct eigenvalues of an $n \times n$ matrix A with corresponding eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$, then $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly independent.
Pf We argue by contradiction. Let $k \leq n$ be the smallest integer so that $c_{1} \mathbf{v}_{1}+\ldots c_{k} \mathbf{v}_{k}=0$ for some combination with some $c_{k} \neq 0$. Then multiplying with $\left(A-\lambda_{k} I\right)$ gives $c_{1}\left(\lambda_{1}-\right.$ $\left.\lambda_{k}\right) \mathbf{v}_{1}+\ldots c_{k}\left(\lambda_{k}-\lambda_{k}\right) \mathbf{v}_{k}=0$, and since $\left(\lambda_{i}-\lambda_{k}\right) \neq 0$, for $i<k$ it follows that we have a linear combination with few vectors, which contradicts our assumption.

Th If A is symmetric matrix $A^{T}=A$ then A has n linearly independent Eigenvectors. We will study diagonalization for symmetric matrices in the next chapter.

Th If B is similar to A, i.e. $B=S^{-1} A S$ then A and B have the same characteristic polynomial and hence the same eigenvalues.

Hence the eigenvalues does not depend on in which coordinate system we view a linear transformation, and hence describe some fundamental property of the linear transformation.

Def The geometric multiplicity of an eigenvalue λ_{0} is the dimension of the eigenspace $E_{\lambda_{0}}=\operatorname{Ker}\left(A-\lambda_{0} I\right)$. The algebraic multiplicity is the integer k such that $p_{A}(\lambda)=$ $\left(\lambda-\lambda_{0}\right)^{k} g(\lambda)$, where g is a polynomial with $g\left(\lambda_{0}\right) \neq 0$.

Th The geometric multiplicity is less than or equal to the algebraic multiplicity.
Pf Suppose λ_{0} is an eigenvalue of an $n \times n$ matrix A with multiplicity m. Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ be a basis for $E_{\lambda_{0}}$. Let S be an invertible matrix with the first m columns consisting of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ (You can find such an S by letting the remaining columns be a basis for the orthogonal complement of the first m columns.) Then $B=S^{-1} A S$ is similar to A. We compute $B \mathbf{e}_{i}=S^{-1} A S \mathbf{e}_{i}=S^{-1} A \mathbf{v}_{i}=\lambda_{0} S^{-1} \mathbf{v}_{i}=\lambda_{0} \mathbf{e}_{i}$. It follows that B is a block matrix of the form $B=\left[\begin{array}{cc}\lambda_{0} I & P \\ 0 & Q\end{array}\right]$, where I in the $m \times m$ identity matrix. By the previous theorem $p_{A}(\lambda)=p_{B}(\lambda)$. But because of the block structure of B we have $\operatorname{det}(B-\lambda I)=$ $\operatorname{det}\left(\lambda_{0} I-\lambda I\right) \operatorname{det}(Q-\lambda I)=\left(\lambda_{0}-\lambda\right)^{m} \operatorname{det}(Q-\lambda I)$. Hence $m \leq$ the algebraic multiplicity.

