
25. Lecture 25 7.3 Eigenvectors

We will show that some square matrices A can be factorized A = SDS−1,
where D is diagonal (i.e. the entries off the main diagonal are all zeros).
This can be used to compute Ak, for large k, which is useful in the applications.
(If multiplying by A represents the evolution of a system during one time unit then multi-
plying by Ak represents the evolution after k time units)

Ex Let D =

[
5 0
0 4

]
. Compute D2, D3 and Dk.

Sol D2 =

[
5 0
0 4

][
5 0
0 4

]
=

[
52 0
0 42

]
, D3 = DD2 =

[
5 0
0 4

][
52 0
0 42

]
=

[
53 0
0 43

]
, Dk=

[
5k 0
0 4k

]
.

Ex Let A =

[
6 −1
2 3

]
. Compute Ak. Use that A = SDS−1, where D =

[
5 0
0 4

]
, S =

[
1 1
1 2

]
,

S−1 =

[
2 −1
−1 1

]
. Sol We have A2 = SDS−1SDS−1 = SDIDS−1 = SD2S−1,. . . , so

Ak = SDkS−1 =

[
1 1
1 2

] [
5k 0
0 4k

] [
2 −1
−1 1

]
=

[
2 · 5k − 4k −5k + 4k

2 · 5k − 2 · 4k −5k + 2 · 4k
]
.

A square matrix A is called diagonalizable if it can be written A = SDS−1, where D is
diagonal and S is invertible. When is A diagonalizable and if it is how do we find D and S?
The answer lies in the eigenvalues and eigenvectors. Note that[

6 −1
2 3

] [
1
1

]
= 5

[
1
1

]
,

[
6 −1
2 3

] [
1
2

]
= 4

[
1
2

]
.

so the columns of S are made out of the eigenvectors of A and the diagonal entries of D are
the eigenvalues of A. We can put this to equations together in one matrix equation:[

6 −1
2 3

] [
1 1
1 2

]
=

[
5 4
5 8

]
=

[
1 1
1 2

] [
5 0
0 4

]
,

i.e. [
6 −1
2 3

]
=

[
1 1
1 2

] [
5 0
0 4

] [
1 1
1 2

]−1

,

In general if A is an n × n matrix with n linearly independent eigenvectors v1, . . . ,vn and
eigenvalues λ1, . . . , λn then

A

 | |
v1 · · ·vn
| |

 =

 | |
Av1 · · ·Avn
| |

 =

 | |
λ1v1 · · ·λnvn
| |

 =

 | |
v1 · · ·vn
| |



λ1 0 · · · 0

0 λ2
. . .

...
...

. . . . . . 0
0 · · · 0 λn


and hence

A =

 | |
v1 · · ·vn
| |



λ1 0 · · · 0

0 λ2
. . .

...
...

. . . . . . 0
0 · · · 0 λn


 | |
v1 · · ·vn
| |

−1

We have hence proven:
Diagonalization Theorem An n × n matrix is diagonalizable A if and only if it has n
linearly independent eigenvectors.
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Ex If possible, diagonalize A =

 2 0 0
1 2 1
−1 0 1

.

Sol The eigenvalues det (A− λI) =

∣∣∣∣∣∣
2− λ 0 0

1 2− λ 1
−1 0 1− λ

∣∣∣∣∣∣ = (2− λ)2(1− λ) = 0.

Basis for λ = 1: v1 =

 0
−1
1

.

Basis for λ = 2: v2 =

 0
1
0

, v3 =

 −1
0
1

.

Construct P =
[
v1 v2 v3

]
=

 0 0 −1
−1 1 0
1 0 1

, D =

 1 0 0
0 2 0
0 0 2

. A = PDP−1.

Ex If possible, diagonalize A =

 2 4 6
0 2 2
0 0 4

.

Sol The eigenvalues det (A− λI) = (λ− 2)2(λ− 4) = 0.

Basis for λ = 2: v1 =

 1
0
0

.

Basis for λ = 4: v2 =

 5
1
1

.

There are not three linearly independent eigenvectors so A can not be diagonalized.
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Th If λ1, . . . , λn are distinct eigenvalues of an n× n matrix A with corresponding eigenvec-
tors v1, . . . ,vn, then v1, . . . ,vn are linearly independent.
Pf We argue by contradiction. Let k ≤ n be the smallest integer so that c1v1 + . . . ckvk = 0
for some combination with some ck 6= 0. Then multiplying with (A − λkI) gives c1(λ1 −
λk)v1 + . . . ck(λk − λk)vk = 0, and since (λi − λk) 6= 0, for i < k it follows that we have a
linear combination with few vectors, which contradicts our assumption.

Th If A is symmetric matrix AT=A then A has n linearly independent Eigenvectors.
We will study diagonalization for symmetric matrices in the next chapter so we postpone
the proof.

Th If B is similar to A, i.e. B = S−1AS then A and B have the same characteristic
polynomial and hence the same eigenvalues.
Pf Since we can write I = S−1S = S−1IS we get

det (B − λI) = det
(
S−1AS − λS−1IS

)
= det

(
S−1(A− λI)S

)
= detS−1 det (A− λI) detS = det (A− λI),

by the product rules for determinants: (det (CD) = detC detD).

This theorem says something very important; that the eigenvalues does not depend on in
which coordinate system we view a linear transformation, and hence describe some funda-
mental property of the linear transformation.

Def The geometric multiplicity of an eigenvalue λ0 is the dimension of the eigenspace
Eλ0 = Ker(A − λ0I). The algebraic multiplicity is the integer k such that pA(λ) =
(λ− λ0)kg(λ), where g is a polynomial with g(λ0) 6= 0.

Th The geometric multiplicity is less than or equal to the algebraic multiplicity.
Pf Suppose λ0 is an eigenvalue of an n × n matrix A with multiplicity m. Let v1, . . . ,vm
be a basis for Eλ0 . Let S be an invertible matrix with the first m columns consisting
of v1, . . . ,vm (You can find such a matrix by letting the remaining columns be a basis
for the orthogonal complement of the first m columns.) Then B = S−1AS is similar to
A. We compute Bei = S−1ASei = S−1Avi = λ0S

−1vi = λ0ei. It follows that B is

a block matrix of the form B =

[
λ0I P
0 Q

]
, where I in the m × m identity matrix. By

the previous theorem pA(λ) = pB(λ). But because of the block structure of B we have
det(B − λI) = det(λ0I − λI) det(Q− λI) = (λ0 − λ)m det(Q− λI). Hence m ≤ k, where k
is the algebraic multiplicity.
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Summary

A square matrix A is called diagonalizable if A = SDS−1, for some S where D is diagonal.

Th An n×nmatrixA is diagonalizable if and only if it has n linearly independent eigenvectors.

If A is an n× n matrix with n linearly independent eigenvectors v1, . . . ,vn and eigenvalues
λ1, . . . , λn then

A

 | |
v1 · · ·vn
| |

 =

 | |
Av1 · · ·Avn
| |

 =

 | |
λ1v1 · · ·λnvn
| |

 =

 | |
v1 · · ·vn
| |



λ1 0 · · · 0

0 λ2
. . .

...
...

. . . . . . 0
0 · · · 0 λn


and hence

A =

 | |
v1 · · ·vn
| |



λ1 0 · · · 0

0 λ2
. . .

...
...

. . . . . . 0
0 · · · 0 λn


 | |
v1 · · ·vn
| |

−1

Th If λ1, . . . , λn are distinct eigenvalues of an n× n matrix A with corresponding eigenvec-
tors v1, . . . ,vn, then v1, . . . ,vn are linearly independent.
Pf We argue by contradiction. Let k ≤ n be the smallest integer so that c1v1 + . . . ckvk = 0
for some combination with some ck 6= 0. Then multiplying with (A − λkI) gives c1(λ1 −
λk)v1 + . . . ck(λk − λk)vk = 0, and since (λi − λk) 6= 0, for i < k it follows that we have a
linear combination with few vectors, which contradicts our assumption.

Th If A is symmetric matrix AT=A then A has n linearly independent Eigenvectors.
We will study diagonalization for symmetric matrices in the next chapter.

Th If B is similar to A, i.e. B = S−1AS then A and B have the same characteristic poly-
nomial and hence the same eigenvalues.

Hence the eigenvalues does not depend on in which coordinate system we view a linear trans-
formation, and hence describe some fundamental property of the linear transformation.

Def The geometric multiplicity of an eigenvalue λ0 is the dimension of the eigenspace
Eλ0 = Ker(A − λ0I). The algebraic multiplicity is the integer k such that pA(λ) =
(λ− λ0)kg(λ), where g is a polynomial with g(λ0) 6= 0.

Th The geometric multiplicity is less than or equal to the algebraic multiplicity.
Pf Suppose λ0 is an eigenvalue of an n×n matrix A with multiplicity m. Let v1, . . . ,vm
be a basis for Eλ0 . Let S be an invertible matrix with the first m columns consisting of
v1, . . . ,vm (You can find such an S by letting the remaining columns be a basis for the
orthogonal complement of the first m columns.) Then B = S−1AS is similar to A. We
compute Bei = S−1ASei = S−1Avi = λ0S

−1vi = λ0ei. It follows that B is a block

matrix of the form B =

[
λ0I P
0 Q

]
, where I in the m ×m identity matrix. By the previous

theorem pA(λ) = pB(λ). But because of the block structure of B we have det(B − λI) =
det(λ0I − λI) det(Q− λI) = (λ0 − λ)m det(Q− λI). Hence m ≤ the algebraic multiplicity.
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