26. Lecture 26: 7.4 Discrete Dynamical Systems

Transition Matrices

Ex $A=\left[\begin{array}{lll}0.7 & 0.1 & 0.2 \\ 0.2 & 0.4 & 0.2 \\ 0.1 & 0.5 & 0.6\end{array}\right]$ is a transition matrix for a mini-web with 3 pages, e.g. the entry in the first column and second row tell us that 20% of those on Page 1 will move to Page 2.
The evolution is given by $\mathbf{x}_{k+1}=A \mathbf{x}_{k}, k=1, \ldots$ Suppose we start at $\mathbf{x}_{0}=\left[\begin{array}{l}1 / 3 \\ 1 / 3 \\ 1 / 3\end{array}\right]$.
What happens as $k \rightarrow \infty$?
It turns out that the eigenvalues are $\lambda_{1}=1, \lambda_{2}=0.5$ and $\lambda_{3}=0.2$ and the corresponding eigenvectors

We can write

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
7 \\
5 \\
8
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{c}
-1 \\
-3 \\
4
\end{array}\right]
$$

$$
\mathbf{x}_{0}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}, \quad \text { where } \quad c_{1}=\frac{1}{20}, \quad c_{2}=\frac{2}{45}, \quad c_{3}=\frac{1}{36} .
$$

Since $A \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i}$ it follows that $A^{k} \mathbf{v}_{i}=\lambda_{i}^{k} \mathbf{v}_{i}$ so
$A^{k} \mathbf{x}_{0}=c_{1} \lambda_{1}^{k} \mathbf{v}_{1}+c_{2} \lambda_{2}^{k} \mathbf{v}_{2}+c_{3} \lambda_{3}^{k} \mathbf{v}_{3}=\frac{1}{20} 1^{k}\left[\begin{array}{l}7 \\ 5 \\ 8\end{array}\right]+\frac{2}{45}(0.5)^{k}\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]+\frac{1}{36}(0.2)^{k}\left[\begin{array}{c}-1 \\ -3 \\ 4\end{array}\right] \rightarrow \frac{1}{20}\left[\begin{array}{l}7 \\ 5 \\ 8\end{array}\right]$, as $k \rightarrow \infty$.

A distribution vector is a vector with all components positive or 0 and adding up to 1 . A transition matrix is a matrix in which each column vector is a distribution vector.

Th Let A be an $n \times n$ transition matrix. Then there is exactly one eigenvector $\mathbf{x}_{\text {equ }}$, called the equilibrium distribution, with eigenvalue 1 . All other eigenvalues are $|\lambda|<1$.
Pf Since the determinant of the transpose is the same as the determinant of the matrix it follows that the characteristic polynomial for A is the same as for A^{T}, so the eigenvalues of A are the same as the eigenvalues A^{T} and in fact the geometric multiplicities are the same because the ranks are the same. It is easy to see that the vector $\mathbf{w}=\left[\begin{array}{c}1 \\ \vdots \\ 1\end{array}\right]$ is an eigenvector to A^{T} with eigenvalue 1. In fact since the entries of each row add up to 1 the dot product of the rows with this vector is also 1 . Now, suppose that \mathbf{x} is another eigenvector $A^{T} \mathbf{x}=\lambda \mathbf{x}$. Let x_{i} be the largest component so $x_{i} \geq x_{k}$ for all k with strict inequality for some k, and let \mathbf{r}_{i} be the i-th row of A. Then $\lambda x_{i}=\mathbf{r}_{i} \cdot \mathbf{x}=r_{i 1} x_{1}+\cdots+r_{i n} x_{n}<r_{i 1} x_{i}+\cdots+r_{i n} x_{i}=x_{i}$ so $\lambda<1$. A similar argument shows that $|\lambda| \leq 1$ and that $\lambda \neq-1$. For later use we also note that:
Lem Let $\mathbf{w}=\left[\begin{array}{c}1 \\ \vdots \\ 1\end{array}\right]$. Then $A^{T} \mathbf{w}=\mathbf{w}$ and $(A \mathbf{x}) \cdot \mathbf{w}=\mathbf{x} \cdot \mathbf{w}$.
Moreover, if \mathbf{v} is an eigenvector of A with eigenvalue $\lambda \neq 1$ then $\mathbf{w} \cdot \mathbf{v}=0$.
$\mathbf{P f}$ Since $A^{T} \mathbf{w}=\mathbf{w}$ we have $\mathbf{w} \cdot \mathbf{v}=\left(A^{T} \mathbf{w}\right) \cdot \mathbf{v}=\mathbf{w} \cdot A \mathbf{v}=\lambda \mathbf{w} \cdot \mathbf{v}$, which proves that $\mathbf{w} \cdot \mathbf{v}=0$.
Let \mathbf{v}_{k} be the eigenvectors of A, with eigenvalues $\lambda_{1}=1$ and $\left|\lambda_{k}\right|<1$ for $k>1$. It follows that the system $\mathbf{x}_{k+1}=A \mathbf{x}_{k}$ which is initially is in the state $\mathbf{x}_{0}=c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}$ will after k times steps be in the state

$$
\mathbf{x}_{k}=c_{1} \lambda_{1}^{k} \mathbf{v}_{1}+\cdots+c_{n} \lambda_{n}^{k} \mathbf{v}_{n}
$$

and as $k \rightarrow \infty$

$$
\mathbf{x}_{k} \rightarrow c_{1} \mathbf{v}_{1}=\mathbf{x}_{e q u} .
$$

Rem Note that we only have to calculate \mathbf{v}_{1} in order to calculate $\mathbf{x}_{\text {equ }}$. This is because it follows from the lemma that $\mathbf{x}_{0} \cdot \mathbf{w}=c_{1} \mathbf{v}_{1} \cdot \mathbf{w}$, so c_{1} is determined directly from \mathbf{x}_{0} and \mathbf{v}_{1}.

Ex Denote the owl and rat population at time k by $\mathbf{x}_{k}=\left[\begin{array}{c}O_{k} \\ R_{k}\end{array}\right]$. Suppose

$$
\begin{aligned}
& O_{k+1}=0.5 O_{k}+0.4 R_{k} \\
& R_{k+1}=-p O_{k}+1.1 R_{k}
\end{aligned}
$$

where $p=0.104$, or $\mathbf{x}_{k+1}=A \mathbf{x}_{k}$, where $A=\left[\begin{array}{cc}0.5 & 0.4 \\ -.104 & 1.1\end{array}\right]$. The eigenvalues for the matrix A are $\lambda_{1}=1.02$ and $\lambda_{2}=0.58$ and the eigenvectors are $\mathbf{v}_{1}=\left[\begin{array}{l}10 \\ 13\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}5 \\ 1\end{array}\right]$. An initial \mathbf{x}_{0} can be written $\mathbf{x}_{0}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}$. Then for $k \geq 0$

$$
\mathbf{x}_{k}=c_{1} A^{k} \mathbf{v}_{1}+c_{2} A^{k} \mathbf{v}_{2}=c_{1} \lambda_{1}^{k} \mathbf{v}_{1}+c_{2} \lambda_{2}^{k} \mathbf{v}_{2}=c_{1}(1.02)^{k}\left[\begin{array}{l}
10 \\
13
\end{array}\right]+c_{2}(0.58)^{k}\left[\begin{array}{l}
5 \\
1
\end{array}\right]
$$

As k becomes large the first state will dominate and the other will go to $\mathbf{0}$ unless the initial conditions are such that $c_{1}=0$ in which case the whole solution goes to 0 .

Summary

$\operatorname{Ex} A=\left[\begin{array}{lll}0.7 & 0.1 & 0.2 \\ 0.2 & 0.4 & 0.2 \\ 0.1 & 0.5 & 0.6\end{array}\right]$ is a transition matrix for a mini-web with 3 pages, e.g. the entry in the first column and second row tell us that 20% of those on Page 1 will move to Page 2.
The evolution is given by $\mathbf{x}_{k+1}=A \mathbf{x}_{k}, k=1, \ldots$ Suppose we start at $\mathbf{x}_{0}=\left[\begin{array}{l}1 / 3 \\ 1 / 3 \\ 1 / 3\end{array}\right]$.
What happens as $k \rightarrow \infty$?
It turns out that the eigenvalues are $\lambda_{1}=1, \lambda_{2}=0.5$ and $\lambda_{3}=0.2$ and the corresponding eigenvectors

We can write

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
7 \\
5 \\
8
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{c}
-1 \\
-3 \\
4
\end{array}\right] .
$$

$$
\mathbf{x}_{0}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}, \quad \text { where } \quad c_{1}=\frac{1}{20}, \quad c_{2}=\frac{2}{45}, \quad c_{3}=\frac{1}{36} .
$$

Since $A \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i}$ it follows that $A^{k} \mathbf{v}_{i}=\lambda_{i}^{k} \mathbf{v}_{i}$ so
$A^{k} \mathbf{x}_{0}=c_{1} \lambda_{1}^{k} \mathbf{v}_{1}+c_{2} \lambda_{2}^{k} \mathbf{v}_{2}+c_{3} \lambda_{3}^{k} \mathbf{v}_{3}=\frac{1}{20} 1^{k}\left[\begin{array}{l}7 \\ 5 \\ 8\end{array}\right]+\frac{2}{45}(0.5)^{k}\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]+\frac{1}{36}(0.2)^{k}\left[\begin{array}{c}-1 \\ -3 \\ 4\end{array}\right] \rightarrow \frac{1}{20}\left[\begin{array}{l}7 \\ 5 \\ 8\end{array}\right]$, as $k \rightarrow \infty$.

A distribution vector is a vector with all components positive or 0 and adding up to 1 . A transition matrix is a matrix in which each column vector is a distribution vector.

Th Let A be an $n \times n$ transition matrix. Then there is exactly one eigenvector $\mathbf{x}_{\text {equ }}$, called the equilibrium distribution, with eigenvalue 1 . All other eigenvalues are $|\lambda|<1$.

Let \mathbf{v}_{k} be the eigenvectors of A, with eigenvalues $\lambda_{1}=1$ and $\left|\lambda_{k}\right|<1$ for $k>1$. It follows that the system $\mathbf{x}_{k+1}=A \mathbf{x}_{k}$ which is initially is in the state $\mathbf{x}_{0}=c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}$ will after k times steps be in the state

$$
\mathbf{x}_{k}=c_{1} \lambda_{1}^{k} \mathbf{v}_{1}+\cdots+c_{n} \lambda_{n}^{k} \mathbf{v}_{n}
$$

and as $k \rightarrow \infty$

$$
\mathbf{x}_{k} \rightarrow c_{1} \mathbf{v}_{1} .
$$

