26. Lecture 26: 7.4 Discrete Dynamical Systems

TRANSITION MATRICES

 $\mathbf{Ex} \ A = \begin{bmatrix} 0.7 & 0.1 & 0.2 \\ 0.2 & 0.4 & 0.2 \\ 0.1 & 0.5 & 0.6 \end{bmatrix}$ is a transition matrix for a mini-web with 3 pages, e.g. the entry in

the first column and second row tell us that 20% of those on Page 1 will move to Page 2.

The evolution is given by $\mathbf{x}_{k+1} = A\mathbf{x}_k, \ k = 1, \dots$ Suppose we start at $\mathbf{x}_0 = \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix}$. What happens as $k \to \infty^2$.

What happens as $k \to \infty$?

It turns out that the eigenvalues are $\lambda_1 = 1$, $\lambda_2 = 0.5$ and $\lambda_3 = 0.2$ and the corresponding Гı] Γ_1] eigenvectors [7]

We can write
$$\mathbf{v}_1 = \begin{bmatrix} 1\\5\\8 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} -1\\-3\\4 \end{bmatrix}.$$
$$\mathbf{x}_0 = c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3, \quad \text{where} \quad c_1 = \frac{1}{20}, \quad c_2 = \frac{2}{45}, \quad c_3 = \frac{1}{36}.$$

Since $A\mathbf{v}_i = \lambda_i \mathbf{v}_i$ it follows that $A^k \mathbf{v}_i = \lambda_i^k \mathbf{v}_i$ so

$$A^{k}\mathbf{x}_{0} = c_{1}\lambda_{1}^{k}\mathbf{v}_{1} + c_{2}\lambda_{2}^{k}\mathbf{v}_{2} + c_{3}\lambda_{3}^{k}\mathbf{v}_{3} = \frac{1}{20}1^{k} \begin{bmatrix} 7\\5\\8 \end{bmatrix} + \frac{2}{45}(0.5)^{k} \begin{bmatrix} 1\\0\\-1 \end{bmatrix} + \frac{1}{36}(0.2)^{k} \begin{bmatrix} -1\\-3\\4 \end{bmatrix} \to \frac{1}{20} \begin{bmatrix} 7\\5\\8 \end{bmatrix},$$
as $k \to \infty$.

A distribution vector is a vector with all components positive or 0 and adding up to 1. A transition matrix is a matrix in which each column vector is a distribution vector.

The Let A be an $n \times n$ transition matrix. Then there is exactly one eigenvector \mathbf{x}_{equ} , called the equilibrium distribution, with eigenvalue 1. All other eigenvalues are $|\lambda| < 1$. Pf Since the determinant of the transpose is the same as the determinant of the matrix it follows that the characteristic polynomial for A is the same as for A^T , so the eigenvalues of A are the same as the eigenvalues A^T and in fact the geometric multiplicities are the same

because the ranks are the same. It is easy to see that the vector $\mathbf{w} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$ is an eigenvector

to A^T with eigenvalue 1. In fact since the entries of each row add up to 1 the dot product of the rows with this vector is also 1. Now, suppose that \mathbf{x} is another eigenvector $A^T \mathbf{x} = \lambda \mathbf{x}$. Let x_i be the largest component so $x_i \ge x_k$ for all k with strict inequality for some k, and let \mathbf{r}_i be the *i*-th row of A. Then $\lambda x_i = \mathbf{r}_i \cdot \mathbf{x} = r_{i1}x_1 + \cdots + r_{in}x_n < r_{i1}x_i + \cdots + r_{in}x_i = x_i$ so $\lambda < 1$. A similar argument shows that $|\lambda| \le 1$ and that $\lambda \ne -1$. For later use we also note that:

Lem Let $\mathbf{w} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$. Then $A^T \mathbf{w} = \mathbf{w}$ and $(A\mathbf{x}) \cdot \mathbf{w} = \mathbf{x} \cdot \mathbf{w}$.

Moreover, if **v** is an eigenvector of A with eigenvalue $\lambda \neq 1$ then $\mathbf{w} \cdot \mathbf{v} = 0$. **Pf** Since $A^T \mathbf{w} = \mathbf{w}$ we have $\mathbf{w} \cdot \mathbf{v} = (A^T \mathbf{w}) \cdot \mathbf{v} = \mathbf{w} \cdot A \mathbf{v} = \lambda \mathbf{w} \cdot \mathbf{v}$, which proves that $\mathbf{w} \cdot \mathbf{v} = 0$.

Let \mathbf{v}_k be the eigenvectors of A, with eigenvalues $\lambda_1 = 1$ and $|\lambda_k| < 1$ for k > 1. It follows that the system $\mathbf{x}_{k+1} = A\mathbf{x}_k$ which is initially is in the state $\mathbf{x}_0 = c_1\mathbf{v}_1 + \cdots + c_n\mathbf{v}_n$ will after k times steps be in the state

$$\mathbf{x}_k = c_1 \lambda_1^k \mathbf{v}_1 + \dots + c_n \lambda_n^k \mathbf{v}_n$$

and as $k \to \infty$

$$\mathbf{x}_k \to c_1 \mathbf{v}_1 = \mathbf{x}_{equ}.$$

Rem Note that we only have to calculate \mathbf{v}_1 in order to calculate \mathbf{x}_{equ} . This is because it follows from the lemma that $\mathbf{x}_0 \cdot \mathbf{w} = c_1 \mathbf{v}_1 \cdot \mathbf{w}$, so c_1 is determined directly from \mathbf{x}_0 and \mathbf{v}_1 .

Ex Denote the owl and rat population at time k by $\mathbf{x}_k = \begin{bmatrix} O_k \\ R_k \end{bmatrix}$. Suppose

$$O_{k+1} = 0.5 O_k + 0.4 R_k$$

 $R_{k+1} = -p O_k + 1.1 R_k$

where p = 0.104, or $\mathbf{x}_{k+1} = A\mathbf{x}_k$, where $A = \begin{bmatrix} 0.5 & 0.4 \\ -.104 & 1.1 \end{bmatrix}$. The eigenvalues for the matrix A are $\lambda_1 = 1.02$ and $\lambda_2 = 0.58$ and the eigenvectors are $\mathbf{v}_1 = \begin{bmatrix} 10 \\ 13 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$. An initial \mathbf{x}_0 can be written $\mathbf{x}_0 = c_1\mathbf{v}_1 + c_2\mathbf{v}_2$. Then for $k \ge 0$

$$\mathbf{x}_{k} = c_{1}A^{k}\mathbf{v}_{1} + c_{2}A^{k}\mathbf{v}_{2} = c_{1}\lambda_{1}^{k}\mathbf{v}_{1} + c_{2}\lambda_{2}^{k}\mathbf{v}_{2} = c_{1}(1.02)^{k} \begin{bmatrix} 10\\13 \end{bmatrix} + c_{2}(0.58)^{k} \begin{bmatrix} 5\\1 \end{bmatrix}$$

As k becomes large the first state will dominate and the other will go to **0** unless the initial conditions are such that $c_1 = 0$ in which case the whole solution goes to **0**.

SUMMARY

 $\mathbf{Ex} \ A = \begin{bmatrix} 0.7 & 0.1 & 0.2 \\ 0.2 & 0.4 & 0.2 \\ 0.1 & 0.5 & 0.6 \end{bmatrix}$ is a transition matrix for a mini-web with 3 pages, e.g. the entry in

the first column and second row tell us that 20% of those on Page 1 will move to Page 2.

The evolution is given by $\mathbf{x}_{k+1} = A\mathbf{x}_k, \ k = 1, \dots$ Suppose we start at $\mathbf{x}_0 = \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix}$. What happens as $k \to \infty^2$. What happens as $k \to \infty$?

It turns out that the eigenvalues are $\lambda_1 = 1$, $\lambda_2 = 0.5$ and $\lambda_3 = 0.2$ and the corresponding eigenvectors Г*-*, ¬ ¬ ГіЛ Γ 17

We can write
$$\mathbf{v}_1 = \begin{bmatrix} 1\\5\\8 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} -1\\-3\\4 \end{bmatrix}.$$

 $\mathbf{x}_0 = c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3, \quad \text{where} \quad c_1 = \frac{1}{20}, \quad c_2 = \frac{2}{45}, \quad c_3 = \frac{1}{36}.$

Since $A\mathbf{v}_i = \lambda_i \mathbf{v}_i$ it follows that $A^k \mathbf{v}_i = \lambda_i^k \mathbf{v}_i$ so

$$A^{k}\mathbf{x}_{0} = c_{1}\lambda_{1}^{k}\mathbf{v}_{1} + c_{2}\lambda_{2}^{k}\mathbf{v}_{2} + c_{3}\lambda_{3}^{k}\mathbf{v}_{3} = \frac{1}{20}1^{k} \begin{bmatrix} 7\\5\\8 \end{bmatrix} + \frac{2}{45}(0.5)^{k} \begin{bmatrix} 1\\0\\-1 \end{bmatrix} + \frac{1}{36}(0.2)^{k} \begin{bmatrix} -1\\-3\\4 \end{bmatrix} \to \frac{1}{20} \begin{bmatrix} 7\\5\\8 \end{bmatrix},$$
as $k \to \infty$.

A distribution vector is a vector with all components positive or 0 and adding up to 1. A transition matrix is a matrix in which each column vector is a distribution vector.

Th Let A be an $n \times n$ transition matrix. Then there is exactly one eigenvector \mathbf{x}_{equ} , called the equilibrium distribution, with eigenvalue 1. All other eigenvalues are $|\lambda| < 1$.

Let \mathbf{v}_k be the eigenvectors of A, with eigenvalues $\lambda_1 = 1$ and $|\lambda_k| < 1$ for k > 1. It follows that the system $\mathbf{x}_{k+1} = A\mathbf{x}_k$ which is initially is in the state $\mathbf{x}_0 = c_1\mathbf{v}_1 + \cdots + c_n\mathbf{v}_n$ will after k times steps be in the state

$$\mathbf{x}_k = c_1 \lambda_1^k \mathbf{v}_1 + \dots + c_n \lambda_n^k \mathbf{v}_n$$

and as $k \to \infty$

$$\mathbf{x}_k \to c_1 \mathbf{v}_1.$$