
27. Lecture 27: 7.5 Complex Eigenvalues

Complex Numbers

The complex plane C is just the real plane R2 with an additional structure given by mul-
tiplication defined as follows. The multiplication of two vectors should be linear in each
argument and commutative and the result should be a vector in the plane. If e1 = (1, 0) and
e2 = (0, 1) then we want

e1e1 = e1, e1e2 = e2, e2e2 = −e1.
To simplify notation one introduces the notation i for e2 and calls a multiple of it an imagi-
nary numbers whereas a multiple of e1 is called a real numbers so

z = a+ i b denotes the vector a e1 + b e2.

With this construction we can hence find a square root of a negative number

i2 = i i = −1.

Moreover, we solve any polynomial equation within the complex numbers.
If z = a+ ib then the complex conjugate z = a− ib is the reflection in the real axis.
The multiplication of complex numbers satisfy

(a+ i b)(c+ i d) = ac− bd+ i (ad+ bc),

which is perhaps not so illuminating. However, the polar form of a complex number

z = a+ i b = r(cos θ + i sin θ), where r =
√
a2 + b2,

leads to more insight as we shall see. Here one calls |z| = r the absolute value of z and
arg(z) = θ the argument of z. Let w be another complex number in polar form

w = c+ i d = ρ(cosφ+ i sinφ), where ρ =
√
c2 + d2.

If we multiply their polar forms we get

zw = rρ(cos θ+i sin θ)(cosφ+i sinφ) = rρ
(
(cos θ cosφ−sin θ sinφ)+i (sin θ cosφ+cos θ sinφ)

)
.

If we use some trigonometric identities this simplifies to

zw = rρ
(

cos(θ + φ) + i sin(θ + φ)
)
.

Hence
|zw| = |z| |w|, arg(z w) = arg(z) + arg(w).

Since the arguments add as for the exponential function; exey = ex+y, it is natural to extend
the definition of the exponential function to complex arguments and in particular define

eiθ = cos θ + i sin θ.

This should simply be thought as a notation reminding us that it satisfies eiθeiφ = ei(θ+φ).

Ex 1 Write z = 1 + i and z = 1− i in polar form z = r(cos θ + i sin θ).
Sol |z| = r =

√
12 + 12 =

√
2 so z =

√
2
(
1/
√

2 + i/
√

2
)

=
√

2 (cos θ + i sin θ), for some

θ. The unique 0 ≤ θ < 2π satisfying cos θ = 1/
√

2 and sin θ = 1/
√

2 is arg(z) = θ = π/4.
Hence z =

√
2
(

cos (π/4) + i sin (π/4)
)

and z =
√

2
(

cos (π/4)− i sin (π/4)
)
.

Fundamental theorem of algebra Any polynomial of degree n with complex coefficients
can be written as p(λ) = k(λ− λ1) · · · (λ− λn), for some complex k and λ1, . . . , λn.
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Complex Eigenvalues

Ex 1 Find the eigenvalues and eigenvectors of A =

[
1 1
−1 1

]
.

Sol This is the matrix for a rotation with scaling: A =
√

2

[
cos θ − sin θ
sin θ cos θ

]
, θ = π/4 and

can not have any real eigenvectors unless the rotation a multiple of π.

The complex eigenvalues are solution of:

det (A− λI) =

∣∣∣∣ 1− λ 1
−1 1− λ

∣∣∣∣ = (1− λ)2 + 12 = (1− λ− i)(1− λ+ i) = 0,

i.e. λ = λ1 = 1 + i, or λ = λ2 = 1− i. The eigenvectors are solutions to:

(A− λ1I)v1 =

[
−i 1
−1 −i

] [
x1
x2

]
=

[
0
0

]
⇔ −ix1 + x2 = 0

−x1 − ix2 = 0
⇔ v1 = α

[
−i
1

]
(A− λ2I)v2 =

[
i 1
−1 i

] [
x1
x2

]
=

[
0
0

]
⇔ ix1 + x2 = 0

−x1 + ix2 = 0
⇔ v2 = β

[
i
1

]

Even though in many applications we are looking for real solutions the complex solutions
can still be helpful on the way towards a final answer as we shall see.

We can now complex diagonalize A. If S =

[ p p
v1 v2p p

]
=

[
−i i
1 1

]
and D =

[
λ1 0
0 λ2

]
then

AS =

[ p p
Av1Av2p p

]
=

[ p p
λ1v1 λ2v2p p

]
=

[ p p
v1 v2p p

][
λ1 0
0 λ2

]
= SD

Hence A = SDS−1, where S−1 =

[
i/2 i/2
−1/2 1/2

]
Ex 2 Find Ak, where A =

[
1 1
−1 1

]
.

Sol We have Ak = (SDS−1)k = SDS−1 · · ·SDS−1 = SDkS−1, where Dk =

[
λk1 0
0 λk2

]
. We

have λ1 =
√

2
(

cos (π/4) + i sin (π/4)
)

so λk1 =
√

2
(

cos (kπ/4) + i sin (kπ/4)
)

and λk2 =√
2
(

cos (kπ/4) − i sin (kπ/4)
)
. Even though S, S−1 and Dk are complex we know that the

end result Ak is real and the complex diagonalization gives a way to calculate it.
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Summary

Complex plane is R2 with an extra multiplicative structure

z = a+ i b where i 2 = −1

The polar representation of a complex number

z = a+ i b = r(cos θ + i sin θ), where r =
√
a2 + b2,

Ex Write 1 + i =
√

2
(

cos (π/4) + i sin (π/4)
)

and 1− i =
√

2
(

cos (π/4)− i sin (π/4)
)
.

Let w be another complex number in polar form

w = c+ i d = ρ(cosφ+ i sinφ), where ρ =
√
c2 + d2,

Then
zw = rρ

(
cos(θ + φ) + i sin(θ + φ)

)
Complex Eigenvalues

Ex 1 Find the eigenvalues and eigenvectors of A =

[
1 1
−1 1

]
and use it to calculate Ak.

Sol This is the matrix for a rotation with scaling: A =
√

2

[
cos θ − sin θ
sin θ cos θ

]
, θ = π/4 and

can not have any real eigenvectors unless the rotation a multiple of π.

The complex eigenvalues are solution of:

det (A− λI) =

∣∣∣∣ 1− λ 1
−1 1− λ

∣∣∣∣ = (1− λ)2 + 12 = (1− λ− i)(1− λ+ i) = 0,

i.e. λ = λ1 = 1 + i, or λ = λ2 = 1− i. The eigenvectors are solutions to:

(A− λ1I)v1 =

[
−i 1
−1 −i

] [
x1
x2

]
=

[
0
0

]
⇔ −ix1 + x2 = 0

−x1 − ix2 = 0
⇔ v1 = α

[
−i
1

]
(A− λ2I)v2 =

[
i 1
−1 i

] [
x1
x2

]
=

[
0
0

]
⇔ ix1 + x2 = 0

−x1 + ix2 = 0
⇔ v2 = β

[
i
1

]

Even though in many applications we are looking for real solutions the complex solutions
can still be helpful on the way towards a final answer as we shall see.

We can now complex diagonalize A. If S =

[ p p
v1 v2p p

]
=

[
−i i
1 1

]
and D =

[
λ1 0
0 λ2

]
then

AS =

[ p p
Av1Av2p p

]
=

[ p p
λ1v1 λ2v2p p

]
=

[ p p
v1 v2p p

][
λ1 0
0 λ2

]
= SD

Hence A = SDS−1.

We have Ak = (SDS−1)k = SDS−1 · · ·SDS−1 = SDkS−1, where Dk =

[
λk1 0
0 λk2

]
.

We have λ1 =
√

2
(

cos (π/4) + i sin (π/4)
)

so λk1 =
√

2
(

cos (kπ/4) + i sin (kπ/4)
)

and λk2 =√
2
(

cos (kπ/4) − i sin (kπ/4)
)
. Even though S, S−1 and Dk are complex we know that the

end result Ak is real and the complex diagonalization gives a way to calculate it.
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