27. Lecture 27: 7.5 Complex Eigenvalues

Complex Numbers

The complex plane \mathbb{C} is just the real plane \mathbb{R}^{2} with an additional structure given by multiplication defined as follows. The multiplication of two vectors should be linear in each argument and commutative and the result should be a vector in the plane. If $\mathbf{e}_{1}=(1,0)$ and $\mathbf{e}_{2}=(0,1)$ then we want

$$
\mathbf{e}_{1} \mathbf{e}_{1}=\mathbf{e}_{1}, \quad \mathbf{e}_{1} \mathbf{e}_{2}=\mathbf{e}_{2}, \quad \mathbf{e}_{2} \mathbf{e}_{2}=-\mathbf{e}_{1} .
$$

To simplify notation one introduces the notation i for \mathbf{e}_{2} and calls a multiple of it an imaginary numbers whereas a multiple of \mathbf{e}_{1} is called a real numbers so

$$
z=a+i b \quad \text { denotes the vector } a \mathbf{e}_{1}+b \mathbf{e}_{2} .
$$

With this construction we can hence find a square root of a negative number

$$
i^{2}=i i=-1
$$

Moreover, we solve any polynomial equation within the complex numbers.
If $z=a+i b$ then the complex conjugate $\bar{z}=a-i b$ is the reflection in the real axis.
The multiplication of complex numbers satisfy

$$
(a+i b)(c+i d)=a c-b d+i(a d+b c)
$$

which is perhaps not so illuminating. However, the polar form of a complex number

$$
z=a+i b=r(\cos \theta+i \sin \theta), \quad \text { where } \quad r=\sqrt{a^{2}+b^{2}}
$$

leads to more insight as we shall see. Here one calls $|z|=r$ the absolute value of z and $\arg (z)=\theta$ the argument of z. Let w be another complex number in polar form

$$
w=c+i d=\rho(\cos \phi+i \sin \phi), \quad \text { where } \quad \rho=\sqrt{c^{2}+d^{2}} .
$$

If we multiply their polar forms we get
$z w=r \rho(\cos \theta+i \sin \theta)(\cos \phi+i \sin \phi)=r \rho((\cos \theta \cos \phi-\sin \theta \sin \phi)+i(\sin \theta \cos \phi+\cos \theta \sin \phi))$.
If we use some trigonometric identities this simplifies to

Hence

$$
z w=r \rho(\cos (\theta+\phi)+i \sin (\theta+\phi)) .
$$

$$
|z w|=|z||w|, \quad \arg (z w)=\arg (z)+\arg (w) .
$$

Since the arguments add as for the exponential function; $e^{x} e^{y}=e^{x+y}$, it is natural to extend the definition of the exponential function to complex arguments and in particular define

$$
e^{i \theta}=\cos \theta+i \sin \theta .
$$

This should simply be thought as a notation reminding us that it satisfies $e^{i \theta} e^{i \phi}=e^{i(\theta+\phi)}$.
Ex 1 Write $z=1+i$ and $\bar{z}=1-i$ in polar form $z=r(\cos \theta+i \sin \theta)$.
Sol $|z|=r=\sqrt{1^{2}+1^{2}}=\sqrt{2}$ so $z=\sqrt{2}(1 / \sqrt{2}+i / \sqrt{2})=\sqrt{2}(\cos \theta+i \sin \theta)$, for some
θ. The unique $0 \leq \theta<2 \pi$ satisfying $\cos \theta=1 / \sqrt{2}$ and $\sin \theta=1 / \sqrt{2}$ is $\arg (z)=\theta=\pi / 4$. Hence $z=\sqrt{2}(\cos (\pi / 4)+i \sin (\pi / 4))$ and $\bar{z}=\sqrt{2}(\cos (\pi / 4)-i \sin (\pi / 4))$.

Fundamental theorem of algebra Any polynomial of degree n with complex coefficients can be written as $p(\lambda)=k\left(\lambda-\lambda_{1}\right) \cdots\left(\lambda-\lambda_{n}\right)$, for some complex k and $\lambda_{1}, \ldots, \lambda_{n}$.

Complex Eigenvalues

Ex 1 Find the eigenvalues and eigenvectors of $A=\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]$.
Sol This is the matrix for a rotation with scaling: $A=\sqrt{2}\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right], \theta=\pi / 4$ and can not have any real eigenvectors unless the rotation a multiple of π.

The complex eigenvalues are solution of:
$\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}1-\lambda & 1 \\ -1 & 1-\lambda\end{array}\right|=(1-\lambda)^{2}+1^{2}=(1-\lambda-i)(1-\lambda+i)=0$,
i.e. $\lambda=\lambda_{1}=1+i$, or $\lambda=\lambda_{2}=1-i$. The eigenvectors are solutions to:

$$
\begin{aligned}
&\left(A-\lambda_{1} I\right) \mathbf{v}_{1}=\left[\begin{array}{cc}
-i & 1 \\
-1 & -i
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad \Leftrightarrow \quad \begin{array}{l}
-i x_{1}+x_{2}=0 \\
-x_{1}-i x_{2}=0
\end{array} \quad \Leftrightarrow \quad \mathbf{v}_{1}=\alpha\left[\begin{array}{c}
-i \\
1
\end{array}\right] \\
&\left(A-\lambda_{2} I\right) \mathbf{v}_{2}=\left[\begin{array}{cc}
i & 1 \\
-1 & i
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad \Leftrightarrow \quad \begin{array}{c}
i x_{1}+x_{2}=0 \\
-x_{1}+i x_{2}=0
\end{array} \quad \Leftrightarrow \quad \mathbf{v}_{2}=\beta\left[\begin{array}{c}
i \\
1
\end{array}\right]
\end{aligned}
$$

Even though in many applications we are looking for real solutions the complex solutions can still be helpful on the way towards a final answer as we shall see.

We can now complex diagonalize A. If $S=\left[\begin{array}{cc}1 & 1 \\ \mathbf{v}_{1} & \mathbf{v}_{2} \\ 1 & 1\end{array}\right]=\left[\begin{array}{cc}-i & i \\ 1 & 1\end{array}\right]$ and $D=\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right]$ then

$$
A S=\left[\begin{array}{cc}
A \mathbf{v}_{1} & A \mathbf{v}_{2} \\
1 & 1
\end{array}\right]=\left[\begin{array}{cc}
\prime & 1 \\
\lambda_{1} \mathbf{v}_{1} & \lambda_{2} \mathbf{v}_{2} \\
1 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
\mathbf{v}_{1} & \mathbf{v}_{2} \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]=S D
$$

Hence $A=S D S^{-1}$, where $S^{-1}=\left[\begin{array}{cc}i / 2 & i / 2 \\ -1 / 2 & 1 / 2\end{array}\right]$
Ex 2 Find A^{k}, where $A=\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]$.
Sol We have $A^{k}=\left(S D S^{-1}\right)^{k}=S D S^{-1} \cdots S D S^{-1}=S D^{k} S^{-1}$, where $D^{k}=\left[\begin{array}{cc}\lambda_{1}^{k} & 0 \\ 0 & \lambda_{2}^{k}\end{array}\right]$. We have $\lambda_{1}=\sqrt{2}(\cos (\pi / 4)+i \sin (\pi / 4))$ so $\lambda_{1}^{k}=\sqrt{2}(\cos (k \pi / 4)+i \sin (k \pi / 4))$ and $\lambda_{2}^{k}=$ $\sqrt{2}(\cos (k \pi / 4)-i \sin (k \pi / 4))$. Even though S, S^{-1} and D^{k} are complex we know that the end result A^{k} is real and the complex diagonalization gives a way to calculate it.

Summary

Complex plane is \mathbb{R}^{2} with an extra multiplicative structure

$$
z=a+i b \quad \text { where } i^{2}=-1
$$

The polar representation of a complex number

$$
z=a+i b=r(\cos \theta+i \sin \theta), \quad \text { where } \quad r=\sqrt{a^{2}+b^{2}}
$$

Ex Write $1+i=\sqrt{2}(\cos (\pi / 4)+i \sin (\pi / 4))$ and $1-i=\sqrt{2}(\cos (\pi / 4)-i \sin (\pi / 4))$.
Let w be another complex number in polar form

$$
w=c+i d=\rho(\cos \phi+i \sin \phi), \quad \text { where } \quad \rho=\sqrt{c^{2}+d^{2}}
$$

Then

$$
z w=r \rho(\cos (\theta+\phi)+i \sin (\theta+\phi))
$$

Complex Eigenvalues

Ex 1 Find the eigenvalues and eigenvectors of $A=\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]$ and use it to calculate A^{k}.
Sol This is the matrix for a rotation with scaling: $A=\sqrt{2}\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right], \theta=\pi / 4$ and can not have any real eigenvectors unless the rotation a multiple of π.

The complex eigenvalues are solution of: $\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}1-\lambda & 1 \\ -1 & 1-\lambda\end{array}\right|=(1-\lambda)^{2}+1^{2}=(1-\lambda-i)(1-\lambda+i)=0$, i.e. $\lambda=\lambda_{1}=1+i$, or $\lambda=\lambda_{2}=1-i$. The eigenvectors are solutions to:

$$
\begin{gathered}
\left(A-\lambda_{1} I\right) \mathbf{v}_{1}=\left[\begin{array}{cc}
-i & 1 \\
-1 & -i
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad \Leftrightarrow \quad \begin{array}{l}
-i x_{1}+x_{2}=0 \\
-x_{1}-i x_{2}=0
\end{array} \quad \Leftrightarrow \quad \mathbf{v}_{1}=\alpha\left[\begin{array}{c}
-i \\
1
\end{array}\right] \\
\left(A-\lambda_{2} I\right) \mathbf{v}_{2}=\left[\begin{array}{cc}
i & 1 \\
-1 & i
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad \Leftrightarrow \quad \begin{array}{c}
i x_{1}+x_{2}=0 \\
-x_{1}+i x_{2}=0
\end{array} \quad \Leftrightarrow \quad \mathbf{v}_{2}=\beta\left[\begin{array}{c}
i \\
1
\end{array}\right]
\end{gathered}
$$

Even though in many applications we are looking for real solutions the complex solutions can still be helpful on the way towards a final answer as we shall see.

We can now complex diagonalize A. If $S=\left[\begin{array}{cc}1 & 1 \\ \mathbf{v}_{1} & \mathbf{v}_{2} \\ 1 & 1\end{array}\right]=\left[\begin{array}{cc}-i & i \\ 1 & 1\end{array}\right]$ and $D=\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right]$ then

$$
A S=\left[\begin{array}{cc}
A \mathbf{v}_{1} & A^{\prime} \mathbf{v}_{2} \\
1 & 1
\end{array}\right]=\left[\begin{array}{cc}
\lambda_{1}^{\prime} \mathbf{v}_{1} & \lambda_{2} \\
1 & \mathbf{v}_{2} \\
1 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
\mathbf{v}_{1} & \mathbf{v}_{2} \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]=S D
$$

Hence $A=S D S^{-1}$.
We have $A^{k}=\left(S D S^{-1}\right)^{k}=S D S^{-1} \cdots S D S^{-1}=S D^{k} S^{-1}$, where $D^{k}=\left[\begin{array}{cc}\lambda_{1}^{k} & 0 \\ 0 & \lambda_{2}^{k}\end{array}\right]$.
We have $\lambda_{1}=\sqrt{2}(\cos (\pi / 4)+i \sin (\pi / 4))$ so $\lambda_{1}^{k}=\sqrt{2}(\cos (k \pi / 4)+i \sin (k \pi / 4))$ and $\lambda_{2}^{k}=$ $\sqrt{2}(\cos (k \pi / 4)-i \sin (k \pi / 4))$. Even though S, S^{-1} and D^{k} are complex we know that the end result A^{k} is real and the complex diagonalization gives a way to calculate it.

