27. LECTURE 27: 7.5 COMPLEX EIGENVALUES
CoMPLEX NUMBERS

The complex plane C is just the real plane R? with an additional structure given by mul-
tiplication defined as follows. The multiplication of two vectors should be linear in each
argument and commutative and the result should be a vector in the plane. If e; = (1,0) and

e; = (0,1) then we want
€e; = €y, €1y = €y, €28y = —€1.

To simplify notation one introduces the notation ¢ for e; and calls a multiple of it an imagi-
nary numbers whereas a multiple of e; is called a real numbers so
z=a+1b denotes the vector ae; + be,.

With this construction we can hence find a square root of a negative number
) ..
1" =11=—1.

Moreover, we solve any polynomial equation within the complex numbers.
If z = a + ib then the complex conjugate Z = a — ib is the reflection in the real axis.
The multiplication of complex numbers satisfy
(a+1ib)(c+id) =ac—bd+i(ad+ be),
which is perhaps not so illuminating. However, the polar form of a complex number
z=a+1ib=r(cosf +isinb), where r =+va?+ b2,
leads to more insight as we shall see. Here one calls |z| = r the absolute value of z and
arg(z) = 6 the argument of z. Let w be another complex number in polar form
w=c+id= p(cos¢p+ i sin ), where p=+Vc?+ d>2.
If we multiply their polar forms we get
zw = rp(cos f+isin 0)(cos p+isin ¢) = rp((cos § cos p—sin 0 sin ¢)+i (sin § cos ¢p+cos f sin @)).
If we use some trigonometric identities this simplifies to

zw =rp(cos(f + @) + i sin(f + ¢)).
Hence
|zw| = |z| |w], arg(z w) = arg(z) + arg(w).
Since the arguments add as for the exponential function; e*e¢¥ = ¢**¥, it is natural to extend
the definition of the exponential function to complex arguments and in particular define

e = cosh + i sin .

This should simply be thought as a notation reminding us that it satisfies e’ = e!(0+9),

Ex 1 Write z =1+ and Z=1— i in polar form z = r(cosf + ¢ sin ).

Sol 2| =7 = V12+12 = V250 2 = V2(1/V2 + i/V2) = V2 (cosf + i sinf), for some
0. The unique 0 < § < 27 satisfying cosf = 1/v/2 and sinf = 1/v/2 is arg(z) = 6 = 7/4.
Hence z = v/2( cos (7/4) + isin (7/4)) and Z = v/2( cos (7/4) — isin (7/4)).

Fundamental theorem of algebra Any polynomial of degree n with complex coefficients
can be written as p(A) = k(A — Ay) -+ (A — \,), for some complex k and Ay, ..., \,.
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Sol This is the matrix for a rotation with scaling: A = V2

Ex 1 Find the eigenvalues and eigenvectors of A =

cosf) —sinf
sinf  cos@
can not have any real eigenvectors unless the rotation a multiple of .

},H:W/Zland

The complex eigenvalues are solution of:

det(A-an=| "N D lsa-are =g a-pa-avi=o,

ie. A=A =1+14,or A =Xy =1—1. The eigenvectors are solutions to:
(A_)\ll)vlz{:i 1}[%]:{8} o —ix1 + 22 =0 N Vl:a[—lz]

—1 T —xr1 — 1ty =0

aonme [ ][2)- 8]+ S2m « weo[i]

7 Ty —T1+ iy =0

Even though in many applications we are looking for real solutions the complex solutions
can still be helpful on the way towards a final answer as we shall see.

| o
We can now complex diagonalize A. If S = {‘11 \|’2} = [12 i] and D = [)(\)1 )(\) } then
2
Lo | | TN, O
AS = |AVvi Ava| = |Aivi Aava| = [viva| [ 7Y =SD
L L F 0 A
_ - | 1/2 12
Hence A = SDS™", where S7' = [_1/2 1/2
Ex 2 Find A*, where A = {_11 ﬂ
k
Sol We have A* = (SDS1)* = SDS~!...SDS™1 = SD*S~! where D*F = [)61 )E)’“} We
2

have A; = v/2(cos (m/4) + isin(7/4)) so A} = v/2(cos (km/4) + isin (km/4)) and N§ =
V2(cos (km/4) — isin (kr/4)). Even though S, S~' and D* are complex we know that the
end result A* is real and the complex diagonalization gives a way to calculate it.



SUMMARY
Complex plane is R? with an extra multiplicative structure
z=a+1ib where i?=—1

The polar representation of a complex number

z=a+1ib=r(cosf +isind), where 7 = Va2 + b2,
Ex Write 1 + i = v/2(cos (7/4) +isin(r/4)) and 1 — i = v/2(cos (7/4) — isin (7/4)).
Let w be another complex number in polar form

w=c+id= p(cosp+ i sin¢), where p =V + &,
Then

zw =rp(cos(f + ¢) + i sin(f + ¢))
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_11 ﬂ and use it to calculate A*.

Ex 1 Find the eigenvalues and eigenvectors of A =

cosf) —sinf
sinf  cos#
can not have any real eigenvectors unless the rotation a multiple of .

Sol This is the matrix for a rotation with scaling: A = V2 ], 0 = /4 and

The complex eigenvalues are solution of:

det(A-an=| "Nt lsaeare =g a-pa A =0,

ie. A=A =1+14,0or A =Xy =1 —1. The eigenvectors are solutions to:

aone (3 A][2]-[8] @ T e e[

—1 Ty -1 — 129 =0
o 1 1 T . 0 il’l + Ty = 0 o 1
(A_M”W_[—1i]l@]_lo] T —mir=0 W_ﬂll}

Even though in many applications we are looking for real solutions the complex solutions
can still be helpful on the way towards a final answer as we shall see.

| | _. .
We can now complex diagonalize A. If S = {"}1 ‘|/'2] = {12 i] and D = ﬁ)l )E) ] then
2
Lo | | RPN
AS = AVl AV2 — | A1Vi Aava| = Vi Vs 1 =SD

Lo | | Lo 0 Ao
Hence A = SDS. .
We have AF = (SDS~1)F = SDS1...SDS™! = SD*S~!, where D* = [%1 )E)k]

2

We have A\; = v/2(cos (m/4) + isin (r/4)) so M} = v/2(cos (kn/4) + isin (kw/4)) and Ny =
V2(cos (km/4) — isin (kr/4)). Even though S, S~' and D* are complex we know that the
end result A* is real and the complex diagonalization gives a way to calculate it.
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