
28. Lecture 28: 8.1 Diagonalizing Symmetric Matrices

As we have seen it is natural to consider complex vectors. Recall that for complex numbers
z = a+ ib we have |z|2 = a2 + b2 = zz, where the complex conjugate is z=a− ib. The length
of a vector with complex components is ‖z‖2 = |z1|2+ · · ·+|zn|2 = z1z1+ · · ·+znzn = zTz.
We define the complex inner product by

〈w, z〉 = zHw = z1w1 + · · ·+ znwn, where zH = zT .

If z and w are real then this reduces to the dot product of vectors in Rn. Just like for the
real inner product it is linear in the first argument but the symmetry is replaced by

〈w, z〉 = 〈z,w〉. (28.1)

We want to take the transpose and conjugate of matrices so we introduce a notation:

AH = A
T
.

(Also denoted by A∗.) As for the transpose (AB)H =BHAH and (AH)H =A. It follows that

〈Aw, z〉 = zHAw = (AHz)Hw = 〈w, AHz〉. (28.2)

There is an analog of symmetric matrices called Hermitian matrices

AH = A. (28.3)

Lem 〈Az, z〉 is real also for complex z if AH = A.

Pf By (28.2), (28.3) and (28.1) 〈Az, z〉 = 〈Az, AHz〉 = 〈z, Az〉 = 〈Az, z〉 so it must be real.
Th Eigenvalues of A are real if AH = A, in particular if A is real and symmetric.
Pf By the (proof of the) previous lemma 〈Az, z〉 = 〈Az, z〉. Applying this to an eigenvector
Az = λz and using the linearity in the first argument and the fact that 〈z, z〉 is real gives
λ〈z, z〉 = λ〈z, z〉. It follows that λ = λ so λ must be real.

Rem The sole purpose of the complex numbers was to prove that the eigenvalues of real
symmetric matrices are real. Since the conclusion has nothing to do with complex numbers
one may ask if there could be a proof that doesn’t use them and this is indeed the case.

Lem Eigenvectors of a real symmetric matrix with different eigenvalues are orthogonal.
Pf If Ax1 = λ1x1 and Ax2 = λ2x2 then since AT = A

λ1〈x1,x2〉 = 〈Ax1,x2〉 = 〈x1, Ax2〉 = λ2〈x1,x2〉.
It therefore follows that 〈x1,x〉2 = 0 if λ1 6= λ2.
Spectral Theorem If A is real symmetric with different eigenvalues then it can be factorized
A = QDQT , where Q is orthogonal and D is diagonal.
Proof We previously showed that we can write A = SDS−1, where the columns of S are
the eigenvectors. Since the eigenvectors are orthogonal we can normalize them so they are
orthonormal and then Q = S is an orthogonal matrix and QT = S−1.
Remark The theorem holds even if the eigenvalues are repeated as we will show.
Remark If A = QDQT , then AT = (QDQT )T = (QT )TDTQT = QDQT = A.
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Spectral Theorem Suppose that A is real and symmetric. Then there is an orthogonal
matrix U such that U−1AU=D is diagonal.
Proof We will just do the 4×4 case since it is clear from that how to do it in general.
Every symmetric matrix has at least one real eigenvalue λ1 and for this eigenvalue we pick
an orthonormal eigenvector u1. Then we use Gram Schmidt to pick three other vectors so
u1,u2,u3,u4 form an orthonormal set and we set U1 =

[
u1u2u3u4

]
. Then Au1 = λ1u1 and

Aui =
∑4

j=1 cijuj so

AU1 =
[
Au1Au2Au3Au4

]
=
[
u1u2u3u4

] 
λ1 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

 .
Since U1 is orthogonal U−1

1 = UT
1 and since A is symmetric it follows that U−1

1 AU1 is
symmetric and hence

U−1
1 AU1 =


λ1 0 0 0
0
0 A2

0

 ,
where A2 is symmetric as well. Hence, the 3× 3 matrix A2 has a real eigenvalue λ2 and we
can form M2 such that

M−1
2 A2M2 =

 λ2 0 0
0 ∗ ∗
0 ∗ ∗



Hence if U2 =


1 0 0 0
0
0 M2

0

 then U−1
2 =


1 0 0 0
0
0 M−1

2

0

 and

U−1
2 U−1

1 AU1U2 =


λ1 0 0 0
0
0 M−1

2 A2M2

0

 =


λ1 0 0 0
0 λ2 0 0
0 0 ∗ ∗
0 0 ∗ ∗

 .
Continuing in this way we get

U−1
4 U−1

3 U−1
2 U−1

1 AU1U2U3U4 =


λ1 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

 = D.

and the lemma follows with U = U1U2U3U4.
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Ex Diagonalize A =

 0 2 −1
2 3 −2
−1 −2 0

with an orthogonal transformation.

Sol A is symmetric so it can be diagonalized by an orthogonal transformation.
The eigenvalues are λ1 = λ2 =−1 and λ3 = 5. The eigenspace corresponding to eigenvalue

−1; (A+ I)x=0 satisfy x1 +2x2−x3 = 0 so v1 =

 1
0
1

 and v2 =

 −2
1
0

 form a basis for the

eigenspace corresponding to λ = −1. We can apply the Gram-Schmidt process to obtain an
orthonormal basis. Let

u1 =
v1

‖v1‖
=

1√
2

 1
0
1


p1 = v2 · u1 u1 = −

√
2u1 =

 −1
0
−1


u2 =

v2 − p1

‖v2 − p1‖
=

1√
3

 −1
1
1


The eigenspace corresponding to λ3 = 5 is spanned by v3 =

 −1
−2
1

 and we set

u3 =
v3

‖v3‖
=

1√
6

 −1
−2
1


Hence A = UDUT where

U =
[
u1 u2 u3

]
=

 1/
√

2 −1/
√

3 −1/
√

6

0 1/
√

3 −2/
√

6

1/
√

2 1/
√

3 1/
√

6

 , D =

 −1 0 0
0 −1 0
0 0 5

 .
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Summary

We define the complex inner product by

〈w, z〉 = zHw = z1w1 + · · ·+ znwn, where zH = zT .

With this notation z and w are called orthogonal if

zHw = 0.

If z and w are real then this reduces to orthogonality in the sense of vectors in Rn.
We want to take the transpose and conjugate of matrices so we introduce a notation:

AH = A
T

Th zHAz is real also for complex z if AH = A.
Pf (zHAz)H = zHAH(zH)H = zHAz. Since zHAz is just a complex number (zHAz)H =

zHAz this shows that zHAz is its own conjugate so it must be real.

Th Eigenvalues of A are real if AH = A.
Pf Multiply Az = λz by zH ; zHAz = λzHz. Since the left is real by the previous theorem
and zHz is real it follows that λ must be real.

Theorem Eigenvectors for different eigenvalues are orthogonal if AH=A.
Proof If Ax1 = λ1x1 and Ax2 = λ2x2 then sine AH = A and λ1 is real

λ1x
H
1 x2 = (Ax1)

Hx2 = xH
1 Ax2 = λ2x

H
1 x2

It therefore follows that xH
1 x2 = 0 since we assumed that λ1 6= λ2.

Spectral Theorem Suppose that A is real and symmetric. Then there is an orthogonal
matrix U such that U−1AU=D is diagonal.

Ex Diagonalize A =

 0 2 −1
2 3 −2
−1 −2 0

with an orthogonal transformation U .

Sol A is symmetric so it can be diagonalized by an orthogonal transformation.
The eigenvalues are λ1 = λ2 =−1 and λ3 = 5. The eigenspace corresponding to eigenvalue

−1; (A+ I)x=0 satisfy x1 +2x2−x3 = 0 so v1 =

 1
0
1

 and v2 =

 −2
1
0

 form a basis for the

eigenspace corresponding to λ = −1. We can apply the Gram-Schmidt process to obtain an
orthonormal basis. Let

u1 =
1√
2

 1
0
1

 , u2 =
1√
3

 −1
1
1


The eigenspace corresponding to λ3 = 5 is spanned by

 −1
−2
1

 and we set u3 =
1√
6

 −1
−2
1

.
and we set U = [u1u2u3] so A = UDUT , where D = diag{λ1, λ2, λ3}.
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