Min-Max

A function $F(x, y)$ has a stationary or critical point at $\left(x_{0}, y_{0}\right)$ if the first order derivatives vanishes $F_{x}\left(x_{0}, y_{0}\right)=F_{y}\left(x_{0}, y_{0}\right)=0$. The question we want to ask is if the critical point is a local maximum or minimum or neither. For simplicity of notation we will assume that the critical point is $(0,0)$. By Taylor's formula

$$
F(x, y)=F(0,0)+F_{x}(0,0) x+F_{y}(0,0) y+P_{2}(x, y)+R_{2}(x, y)
$$

where

$$
P_{2}(x, y)=\frac{1}{2}\left(F_{x x}(0,0) x^{2}+2 F_{x y}(0,0) x y+F_{y y}(0,0) y^{2}\right)
$$

and the error is smaller when (x, y) is close to $(0,0)$.

$$
\left|R_{2}(x, y)\right| \leq C(|x|+|y|)^{3} .
$$

The behavior of F close to $(0,0)$ is determined by the behavior of P_{2}.
Therefore we want to study for which constants a, b, c a polynomial

$$
q(x, y)=a x^{2}+2 b x y+c y^{2}
$$

has a max/min or saddle point.
Ex The typical examples are $q=x^{2}+y^{2}$ a max, $q=-\left(x^{2}+y^{2}\right)$ a min and $q(x, y)= \pm\left(x^{2}-y^{2}\right)$ or $q=2 x y$ a saddle point.

The quadratic form $q(x, y)$ is said to be positive definite if $q(x, y)>0$ for $(x, y) \neq(0,0)$. What conditions on a, b, c are needed for $q(x, y)$ to be positive definite?
We must have $q(1,0)=a>0$ and $q(0,1)=c>0$ but that is not all.
If we complete the square we get

$$
q(x, y)=a\left(x+\frac{b}{a} y\right)^{2}+\left(c-\frac{b^{2}}{a}\right) y^{2}
$$

so we must have $q(-b / a, 1)=c-b^{2} / a>0$ so we must also have that $a c>b^{2}$.
On the other hand it follows that $q(x, y)$ is positive definite if these conditions are true.
Now $q(x, y)$ can be written as a bilinear form using a symmetric matrix:

$$
q\left(x_{1}, x_{2}\right)=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]^{T}\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\mathbf{x}^{T} A \mathbf{x}, \quad \text { if } \quad \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right], \quad A=\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]
$$

so the condition for positivity is that the determinant $a c-b^{2}>0$ and $a>0$. An equivalent condition is that the eigenvalues λ_{1} and λ_{2} are positive since $\lambda_{1} \lambda_{2}=a c-b^{2}$ and $\lambda_{1}+\lambda_{2}=a+c$.

Quadratic Forms and Positive definiteness
If A is a symmetric $n \times n$ matrix then the quadratic form

$$
q(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}=\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}
$$

is said to be positive definite if $q(\mathbf{x})>0$ for $\mathbf{x} \neq 0$.
Th That $q(\mathbf{x})$ is positive definite equivalent to that all the eigenvalues of $A \lambda_{i}>0$.
Pf In fact A can be diagonalized $A=Q D Q^{T}, D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ are the eigenvalues so if we set $\mathbf{y}=Q^{T} \mathbf{x}$ we obtain

$$
q(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}=\mathbf{x}^{T} Q D Q^{T} \mathbf{x}=\left(Q^{T} \mathbf{x}\right)^{T} D Q \mathbf{x}=\mathbf{y}^{T} D \mathbf{y}=\lambda_{1} y_{1}^{2}+\cdots+\lambda_{n} y_{n}^{2}=\widetilde{q}(\mathbf{y})
$$

which is always positive if the eigenvalues are positive and $\mathbf{y} \neq 0$, which is equivalent to $\mathbf{x} \neq 0$.
Ex Is $q(\mathbf{x})=3 x_{1}^{2}+2 x_{2}^{2}+4 x_{1} x_{2}+4 x_{2} x_{3}$ positive definite?
Sol Because of all the plus signs this form looks positive definite, but the matrix of the form

$$
A=\left[\begin{array}{lll}
3 & 2 & 0 \\
2 & 2 & 2 \\
0 & 2 & 1
\end{array}\right]
$$

has the eigenvalues 5,2 , and -1 , so q is an indefinite quadratic form, not positive definite.

Rem Like in the two dimensional case there is an easier way to check if it is positive definite:
Th Principal submatrices and definiteness Consider a symmetric $n \times n$ matrix A. For $m=1, \ldots, n$, let $A^{(m)}$ be the $m \times m$ matrix obtained by omitting all rows and columns of A past the m th. These matrices $A^{(m)}$ are called the principal submatrices of A. The matrix A is positive definite if (and only if) $\operatorname{det}\left(A^{(m)}\right)>0$, for all $m=1, \ldots, n$.
Pf Problem 34 in the book.
Ex In the example $\operatorname{det} A^{(1)}=3>0, \operatorname{det} A^{(2)}=3 \cdot 2-2: 2=2>0$ and $\operatorname{det} A^{(3)}=\operatorname{det} A=6>0$.

Constrained optimization

Let $q(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}$, where A is symmetric, be a quadratic form. Find the maximum and minimum of $q(\mathbf{x})$ when $\|\mathbf{x}\|=1$.

Ex Find the max and min of $q(\mathbf{x})=9 x_{1}^{2}+4 x_{2}^{2}+3 x_{3}^{2}$ when $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1$.
Sol We have $q(\mathbf{x})=9 x_{1}^{2}+4 x_{2}^{2}+3 x_{3}^{2} \leq 9\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)=9$, when $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1$, so $\max \leq 9$.
On the other hand if $\left(x_{1}, x_{2}, x_{3}\right)=(1,0,0)$ then $q(\mathbf{x})=9$ and $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1$, so $\max =9$.
Similarly $q(\mathbf{x})=9 x_{1}^{2}+4 x_{2}^{2}+3 x_{3}^{2} \geq 3\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)=3$, when $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1$, so $\mathrm{min} \geq 3$.
On the other hand if $\left(x_{1}, x_{2}, x_{3}\right)=(0,0,1)$ then $q(\mathbf{x})=3$ and $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1$, so $\min =3$.
Rem Note that the max and min of $q(\mathbf{x})=9 x_{1}^{2}+4 x_{2}^{2}+3 x_{3}^{2}$ when $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1$ is the largest respectively smallest eigenvalue of $A=\operatorname{diag}\{9,4,3\}$. This is always true:

Th Let A be a symmetric matrix, and define m and M by

$$
m=\min \left\{\mathbf{x}^{T} A \mathbf{x} ;\|\mathbf{x}\|=1\right\}, \quad M=\max \left\{\mathbf{x}^{T} A \mathbf{x} ;\|\mathbf{x}\|=1\right\}
$$

Then M is the greatest eigenvalue of A and m is the least eigenvalue of A. The value of $\mathbf{x}^{T} A \mathbf{x}$ is M when \mathbf{x} is a unit eigenvector corresponding to M. The value of $\mathbf{x}^{T} A \mathbf{x}$ is m when \mathbf{x} is a unit eigenvector corresponding to m. Pf Orthogonally diagonalize A as $Q D Q^{T}$. We know that

$$
\mathbf{x}^{T} A \mathbf{x}=\mathbf{y}^{T} D \mathbf{y}, \quad \text { when } \mathbf{x}=Q \mathbf{y}
$$

Also,

$$
\|\mathbf{x}\|=\|Q \mathbf{y}\|=\|\mathbf{y}\|
$$

because $Q^{T} Q=I$. In particular $\|\mathbf{x}\|=1$ if and only if $\|\mathbf{y}\|=1$. Thus $\mathbf{x}^{T} A \mathbf{x}$ and $\mathbf{y}^{T} D \mathbf{y}$ assume the same values as \mathbf{x} and \mathbf{y} range over all unit vectors. We have therefore reduced proving the theorem for diagonal matrices where the result follows as in the previous example.

SUMMARY

We want to study for which constants a, b, c a polynomial

$$
q(x, y)=a x^{2}+2 b x y+c y^{2}
$$

has a max/min or saddle point.
Ex The typical examples are $q=x^{2}+y^{2}$ a max, $q=-\left(x^{2}+y^{2}\right)$ a min and $q(x, y)= \pm\left(x^{2}-y^{2}\right)$ or $q=2 x y$ a saddle point.

The polynomial $q(x, y)$ is said to be positive definite if $q(x, y)>0$ for $(x, y) \neq(0,0)$.
What conditions on a, b, c are needed for $q(x, y)$ to be positive definite?
We must have $q(1,0)=a>0$ and $q(0,1)=c>0$ but that is not all.
If we complete the square we get

$$
q(x, y)=a\left(x+\frac{b}{a} y\right)^{2}+\left(c-\frac{b^{2}}{a}\right) y^{2}
$$

so we must have $q(-b / a, 1)=c-b^{2} / a>0$ so we must also have that $a c>b^{2}$.
On the other hand it follows that $q(x, y)$ is positive definite if these conditions are true.
Now $q(x, y)$ can be written as a bilinear form using a symmetric matrix:

$$
q(x, y)=\left[\begin{array}{l}
x \\
y
\end{array}\right]^{T}\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\mathbf{x}^{T} A \mathbf{x}
$$

so the condition for positivity is that the determinant $a c-b^{2}>0$ and $a>0$. An equivalent condition is that the eigenvalues λ_{1} and λ_{2} are positive since $\lambda_{1} \lambda_{2}=a c-b^{2}$ and $\lambda_{1}+\lambda_{2}=a+c$.

If A is a symmetric $n \times n$ matrix then the quadratic form

$$
q(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}=\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}
$$

is said to be positive definite if $\mathbf{x}^{T} A \mathbf{x}>0$ for $\mathbf{x} \neq 0$.
This is equivalent to that all the eigenvalues $\lambda_{i}>0$.
In fact A can be diagonalized $A=Q D Q^{T}, D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ are the eigenvalues so if we set $\mathbf{y}=Q^{T} \mathbf{x}$ we obtain

$$
q(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}=\mathbf{x}^{T} Q D Q^{T} \mathbf{x}=\left(Q^{T} \mathbf{x}\right)^{T} D Q \mathbf{x}=\mathbf{y}^{T} D \mathbf{y}=\lambda_{1} y_{1}^{2}+\cdots+\lambda_{n} y_{n}^{2}=\widetilde{q}(\mathbf{y})
$$

which is always positive if the eigenvalues are positive and $\mathbf{y} \neq 0$, which is equivalent to $\mathbf{x} \neq 0$.

