3. LECTURE 3: (1.2) 1.3 VECTOR EQUATIONS AND MATRIX MULTIPLICATION In linear algebra we think of **vectors** in \mathbb{R}^n as column vectors or $n \times 1$ matrices

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}, \qquad \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

Addition and scalar multiplication are defined by

$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ \vdots \\ u_n + v_n \end{bmatrix}, \qquad \lambda \mathbf{u} = \begin{bmatrix} \lambda u_1 \\ \lambda u_2 \\ \vdots \\ \lambda u_n \end{bmatrix}, \quad \lambda \in \mathbf{R}.$$

Given vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ and scalars $\lambda_1, \ldots, \lambda_k$, the vector

$$\mathbf{w} = \lambda_1 \mathbf{v}_1 + \dots + \lambda_k \mathbf{v}_k$$

is called a **linear combination** of the vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$, with weights $\lambda_1, \ldots, \lambda_k$.

The first question we will ask today is: Given a vector \mathbf{w} and vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$, can we find scalars $\lambda_1, \ldots, \lambda_k$, such that \mathbf{w} is a linear combination of $\mathbf{v}_1, \ldots, \mathbf{v}_k$?

In \mathbb{R}^2 and \mathbb{R}^3 we have a geometric notion of vector addition and scalar multiplication. We think of vectors as arrows with a length and a direction.

The parallelogram law says that the sum $\mathbf{u} + \mathbf{v}$ is given by placing the start of \mathbf{v} where \mathbf{u} ends. Check this by drawing $\mathbf{u} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, and $\mathbf{u} + \mathbf{v} = \begin{bmatrix} 1+2 \\ 3+1 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$. If $\lambda > 0$ then scalar multiplication $\lambda \mathbf{u}$ is the vector in the same direction as \mathbf{u} with length λ times the length of \mathbf{u} . Check this by drawing $\mathbf{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $2\mathbf{u} = \begin{bmatrix} 2 \cdot 1 \\ 2 \cdot 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$.

Ex Let $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. Express $\mathbf{b} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$ as linear combinations of \mathbf{v}_1 and \mathbf{v}_2 . **Sol.** We start by drawing a net of parallelograms with sides \mathbf{v}_1 and \mathbf{v}_2 . Then we see how far we should go first in the \mathbf{v}_1 and then in the \mathbf{v}_2 direction to reach \mathbf{b} . We see that $\mathbf{b} = \mathbf{v}_1 + 2\mathbf{v}_2$.

Ex Let $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$. Express $\mathbf{b} = \begin{bmatrix} 6 \\ 0 \end{bmatrix}$ as linear combinations of \mathbf{v}_1 and \mathbf{v}_2 . **Sol.** Since $\mathbf{v}_2 = 2\mathbf{v}_1$ we can only reach vectors \mathbf{b} which are on the line $t\mathbf{v}_1$ for some t, but this can not be equal to be for any t since one of the components of \mathbf{b} vanishes.

Ex Let
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} 4 \\ 2 \\ 14 \end{bmatrix}$, $\mathbf{a}_3 = \begin{bmatrix} 3 \\ 6 \\ 10 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} -1 \\ 8 \\ -5 \end{bmatrix}$
Determine if **b** is a linear combination of \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 .

Sol b is a linear combination of \mathbf{a}_1 , \mathbf{a}_2 and \mathbf{a}_3 if we can find scalars x_1, x_2, x_3 so

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + x_3\mathbf{a}_3 = \mathbf{b}$$

If we write it out we get the vector equation

$$x_1 \begin{bmatrix} 1\\0\\3 \end{bmatrix} + x_2 \begin{bmatrix} 4\\2\\14 \end{bmatrix} + x_3 \begin{bmatrix} 3\\6\\10 \end{bmatrix} = \begin{bmatrix} -1\\8\\-5 \end{bmatrix}.$$

If we add up the vectors to the left we get

$$\begin{bmatrix} x_1 + 4x_2 + 3x_3 \\ 2x_2 + 6x_3 \\ 3x_1 + 14x_2 + 10x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ 8 \\ -5 \end{bmatrix}.$$

i.e. we get a linear system of equations

$$\begin{aligned} x_1 + 4x_2 + 3x_3 &= -1 \\ 2x_2 + 6x_3 &= 8 \\ 3x_1 + 14x_2 + 10x_3 &= -5 \end{aligned}$$

The corresponding augmented matrix is

$$\begin{bmatrix} 1 & 4 & 3 & -1 \\ 0 & 2 & 6 & 8 \\ 3 & 14 & 10 & -5 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 1 & 4 & 3 & -1 \\ 0 & 2 & 6 & 8 \\ 0 & 2 & 1 & -2 \end{bmatrix} (3) - 3(1) \Leftrightarrow \begin{bmatrix} 1 & 4 & 3 & -1 \\ 0 & 1 & 3 & 4 \\ 0 & 2 & 1 & -2 \end{bmatrix} (2)/2 \Leftrightarrow \\ \Leftrightarrow \begin{bmatrix} 1 & 4 & 3 & -1 \\ 0 & 1 & 3 & 4 \\ 0 & 0 & -5 & -10 \end{bmatrix} (3) - 2(2) \Leftrightarrow \begin{bmatrix} 1 & 4 & 3 & -1 \\ 0 & 1 & 3 & 4 \\ 0 & 0 & 1 & 2 \end{bmatrix} (3)/(-5) \\ \Leftrightarrow \begin{bmatrix} 1 & 0 & -9 & -17 \\ 0 & 1 & 3 & 4 \\ 0 & 0 & 1 & 2 \end{bmatrix} (1) - 4(2) \\ \Leftrightarrow \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 2 \end{bmatrix} (1) + 9(3) \\ (2) - 3(3) \end{cases}$$
we get the system
$$x_1 = 1 \\ x_2 = -2 \\ x_2 = 2$$

and hence

i.e.

$$\mathbf{b} = \mathbf{a}_1 - 2\mathbf{a}_2 + 2\mathbf{a}_3$$

Note that \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 and \mathbf{b} are columns of the augmented matrix $\begin{bmatrix} \mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3 \ \mathbf{b} \end{bmatrix}$. Hence solving the vector equation $\mathbf{b} = x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + x_3 \mathbf{a}_3$ is the same as solving the linear system with augmented matrix $\begin{bmatrix} \mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3 \ \mathbf{b} \end{bmatrix}$.

In general the vector equation

$$\mathbf{b} = x_1 \mathbf{a}_1 + \dots + x_k \mathbf{a}_k$$

has the same solution set as the linear system with augmented matrix

$$\begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_k & \mathbf{b} \end{bmatrix}$$

i.e. **b** can be generated as a linear combination of $\mathbf{a}_1, \dots, \mathbf{a}_k$ if and only if there is a solution to the linear system with the corresponding augmented matrix.

MATRIX MULTIPLICATION

Recall that the dot product of two vectors $\mathbf{w} = \begin{bmatrix} w_1 w_2 \dots w_n \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$ is $\mathbf{w} \cdot \mathbf{v} = w_1 v_1 + w_2 v_2 + \dots + w_n v_n$

One can think of linear system

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$
(3.1)

as a single vector equation in matrix form

$$A\mathbf{x} = \mathbf{b},\tag{3.2}$$

where

$$A\mathbf{x} = \mathbf{b},$$

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{in} \\ \vdots & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

and matrix multiplication $A\mathbf{x}$ of the $m \times n$ matrix A and the $n \times 1$ column vector \mathbf{x} is defined to be the $m \times 1$ column vector formed from the dot product of the row vectors $\mathbf{w}_i = [a_{i1} a_{i2} \dots a_{in}]$ of A with the column vector \mathbf{x} :

$$A\mathbf{x} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{bmatrix} = \begin{bmatrix} \mathbf{w}_1 \cdot \mathbf{x} \\ \mathbf{w}_2 \cdot \mathbf{x} \\ \vdots \\ \mathbf{w}_m \cdot \mathbf{x} \end{bmatrix}, \quad \text{if} \quad A = \begin{bmatrix} - \mathbf{w}_1 & - \\ - \mathbf{w}_2 & - \\ \vdots \\ - \mathbf{w}_m & - \end{bmatrix}$$
(3.3)

Then (3.2) says that the column vector $A\mathbf{x}$ is equal to the column vector \mathbf{b} . (3.1) just says that the components of these column vectors are equal.

The product (3.3) can be written as linear combination of the column vectors \mathbf{v}_i of A

$$A\mathbf{x} = x_1 \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} + \dots + x_n \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix} = x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \dots + x_n \mathbf{v}_m, \quad \text{if} \quad A = \begin{bmatrix} | & | & | \\ \mathbf{v}_1 \mathbf{v}_2 \cdots \mathbf{v}_m \\ | & | & | \end{bmatrix}$$
(3.4)

(3.4) is multiplication by columns. (3.3) is multiplication by rows.

Multiplying by the $m \times n$ matrix A hence defines a map $\mathbf{f} : \mathbf{R}^n \ni \mathbf{x} \to A\mathbf{x} \in \mathbf{R}^m$, for each $n \times 1$ column vector **x** we get an $m \times 1$ column vector A**x** defined by (3.3). The map is linear; $A(\mathbf{x}+\mathbf{y}) = A\mathbf{x}+A\mathbf{y}$, $A(\lambda \mathbf{x}) = \lambda A\mathbf{x}$. All linear maps are of this form.

1.5 IN LAY ET AL SOLUTION SETS OF LINEAR SYSTEMS

A homogeneous system is a system of the form

$$A\mathbf{x} = \mathbf{0}$$

where A is an $m \times n$ matrix and **0** is the zero vector in \mathbb{R}^m .

A homogeneous system always has the **trivial solution** $\mathbf{x} = \mathbf{0}$ so its consistent.

Consistent systems with a free variable have infinitely many solutions.

A homogeneous system has a **nontrivial solution** $\mathbf{x} \neq \mathbf{0}$ if and only if it has free variables. **Fig. 1** Describe the solution set of the system $x_1 + 2x_2 - 3x_3 = 0$

Ex 1 Describe the solution set of the system $\begin{array}{c} x_1 + 2x_2 - 5x_3 = 0 \\ 4x_1 + 8x_2 - 11x_3 = 0 \end{array}$

Sol There is at least one free variable since there are 2 equations in 3 variables.

$$\begin{bmatrix} 1 & 2 & -3 & 0 \\ 4 & 8 & -11 & 0 \end{bmatrix} \sim -4(1) \begin{bmatrix} 1 & 2 & -3 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \sim +3(1) \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
$$x_1 + 2x_2 = 0$$
$$x_3 = 0 \qquad \Leftrightarrow \qquad x_1 = -2x_2, \quad x_2 = \text{free}, \quad x_3 = 0$$
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -2x_2 \\ x_2 \\ 0 \end{bmatrix} = x_2 \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} = x_2 \mathbf{v}$$

This is the parametric equation of a line through **0** in the direction of **v Ex 2** Determine the solution set of $\begin{array}{c} x_1 + 2x_2 - 3x_3 = 0 \\ 4x_1 + 8x_2 - 11x_3 = 2 \end{array}$

Sol
$$\begin{bmatrix} 1 & 2 & -3 & 0 \\ 4 & 8 & -11 & 2 \end{bmatrix} \sim -4(1) \begin{bmatrix} 1 & 2 & -3 & 0 \\ 0 & 0 & 1 & 2 \end{bmatrix} \sim +3(1) \begin{bmatrix} 1 & 2 & 0 & 6 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

 $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 6 - 2x_2 \\ x_2 \\ 2 \end{bmatrix} = \begin{bmatrix} 6 \\ 0 \\ 2 \end{bmatrix} + x_2 \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} = \mathbf{p} + x_2 \mathbf{v}, \quad x_2 \text{ is a free parameter.}$

This is the parametric equation of a line through \mathbf{p} in the direction of \mathbf{v} , parallel to Ex 1.

If the nonhomogeneous equation $A\mathbf{x} = \mathbf{b}$ is consistent its solution set is parallel to the solution set to the homogeneous equation $A\mathbf{x} = \mathbf{0}$.

Th Suppose $A\mathbf{x} = \mathbf{b}$ is consistent and let \mathbf{p} be a solution. Then any other solution $\mathbf{x} = \mathbf{p} + \mathbf{v}_h$, where \mathbf{v}_h is a solution to $A\mathbf{v}_h = \mathbf{0}$.

Pf Since matrix multiplication is linear $A(\mathbf{p} + \mathbf{v}_h) = A\mathbf{p} + A\mathbf{v}_h = \mathbf{b}$.

Ex Describe the solution set to $x_1 - 2x_2 - 2x_3 = b$ for b = 0, 1. **Sol** x_2 and x_3 are free variables

$$\mathbf{x} = \begin{bmatrix} b + 2x_2 + 2x_3 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b \\ 0 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} = \mathbf{p} + x_2 \mathbf{v}_1 + x_3 \mathbf{v}_2$$

Since x_2 and x_3 are free parameters this is the **parametric vector equation** of a plane through **p** and parallel to the vectors \mathbf{v}_1 and \mathbf{v}_2 .

If b=0 its the plane spanned by $\mathbf{v}_1, \mathbf{v}_2$ and if $b\neq 0$ it is a plane parallel to this plane.

SUMMARY AND CONCEPTUAL QUESTIONS

We can now write a linear system with augmented matrix

$$\left[\begin{array}{rrrrr} 2 & 3 & 4 & 9 \\ -3 & 1 & 0 & -2 \end{array}\right], \tag{3.5}$$

as a System of Linear Equations

$$2x_1 + 3x_2 + 4x_3 = 9 -3x_1 + x_2 = -2$$
(3.6)

as a Vector Equation

$$x_{1}\begin{bmatrix}2\\-3\end{bmatrix} + x_{2}\begin{bmatrix}3\\1\end{bmatrix} + x_{3}\begin{bmatrix}4\\0\end{bmatrix} = \begin{bmatrix}9\\-2\end{bmatrix}$$
(3.7)

or as a Matrix Equation

 $\begin{bmatrix} 2 & 3 & 4 \\ -3 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 9 \\ -2 \end{bmatrix}$

Viewing the system as the intersection of planes (3.6) is called the **row picture** since each equation corresponds to a row of the augmented matrix (3.5).

Viewing the system as a linear combination of vectors (3.7) is called the **column picture** since each vector corresponds to a column of the augmented matrix (3.5).

Matrix multiplication can be calculated in two ways corresponding to the row picture:

$$\begin{bmatrix} 1-4\\3&2\\0&5 \end{bmatrix} \begin{bmatrix} 7\\-6 \end{bmatrix} = \begin{bmatrix} 1\cdot7+(-4)\cdot(-6)\\3\cdot7+2\cdot(-6)\\0\cdot7+5\cdot(-6) \end{bmatrix} = \begin{bmatrix} 31\\9\\-30 \end{bmatrix}.$$
respective; y the column picture:

$$\begin{bmatrix} 1&-4\\3&2\\0&5 \end{bmatrix} \begin{bmatrix} 7\\-6 \end{bmatrix} = 7\begin{bmatrix} 1\\3\\0 \end{bmatrix} + -6\begin{bmatrix} -4\\2\\5 \end{bmatrix} = \begin{bmatrix} 7\\21\\0 \end{bmatrix} + \begin{bmatrix} 24\\-12\\-30 \end{bmatrix} = \begin{bmatrix} 31\\9\\-30 \end{bmatrix}.$$

An $n \times n$ matrix A gives a linear map $\mathbb{R}^n \ni \mathbf{x} \to A\mathbf{x} \in \mathbb{R}^n$, i.e. $A(\mathbf{x}+\mathbf{y}) = A\mathbf{x}+A\mathbf{y}, A(\lambda \mathbf{x}) = \lambda A(\mathbf{x})$.

If A is an $n \times n$ matrix, we have learned that the linear system

$$A\mathbf{x} = \mathbf{b}$$

can be solved uniquely for every **b** iff the reduced row echelon form has only 1's in the diagonal.

An $n \times n$ matrix B is called an **inverse** of an $n \times n$ A if the solution to $A\mathbf{x} = \mathbf{b}$ can be give as

$$\mathbf{x} = B\mathbf{b}$$

Question When does an $n \times n$ matrix A have an inverse? Hint: Try the 2×2 case.

The system $A\mathbf{x} = \mathbf{0}$ is called the **homogeneous equation**:

$$A\mathbf{x} = \mathbf{0}$$

It always has the **trivial** solution $\mathbf{x} = \mathbf{0}$. A solution $\mathbf{x} \neq \mathbf{0}$ is called **nontrivial**.

Question Let A be an $n \times n$ matrix. When does the system $A\mathbf{x} = \mathbf{0}$ have a nontrivial solution?