3. Lecture 3: (1.2) 1.3 Vector Equations and Matrix multiplication

In linear algebra we think of vectors in \mathbf{R}^{n} as column vectors or $n \times 1$ matrices

$$
\mathbf{u}=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]
$$

Addition and scalar multiplication are defined by

$$
\mathbf{u}+\mathbf{v}=\left[\begin{array}{c}
u_{1}+v_{1} \\
u_{2}+v_{2} \\
\vdots \\
u_{n}+v_{n}
\end{array}\right], \quad \quad \lambda \mathbf{u}=\left[\begin{array}{c}
\lambda u_{1} \\
\lambda u_{2} \\
\vdots \\
\lambda u_{n}
\end{array}\right], \quad \lambda \in \mathbf{R} .
$$

Given vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ and scalars $\lambda_{1}, \ldots, \lambda_{k}$, the vector

$$
\mathbf{w}=\lambda_{1} \mathbf{v}_{1}+\cdots+\lambda_{k} \mathbf{v}_{k}
$$

is called a linear combination of the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$, with weights $\lambda_{1}, \ldots \lambda_{k}$.
The first question we will ask today is: Given a vector \mathbf{w} and vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$, can we find scalars $\lambda_{1}, \ldots, \lambda_{k}$, such that \mathbf{w} is a linear combination of $\mathbf{v}_{1}, \ldots \mathbf{v}_{k}$?

In \mathbf{R}^{2} and \mathbf{R}^{3} we have a geometric notion of vector addition and scalar multiplication. We think of vectors as arrows with a length and a direction.

The parallelogram law says that the sum $\mathbf{u}+\mathbf{v}$ is given by placing the start of \mathbf{v} where \mathbf{u} ends. Check this by drawing $\mathbf{u}=\left[\begin{array}{l}1 \\ 3\end{array}\right], \mathbf{v}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$, and $\mathbf{u}+\mathbf{v}=\left[\begin{array}{l}1+2 \\ 3+1\end{array}\right]=\left[\begin{array}{l}3 \\ 4\end{array}\right]$. If $\lambda>0$ then scalar multiplication $\lambda \mathbf{u}$ is the vector in the same direction as \mathbf{u} with length λ times the length of \mathbf{u}. Check this by drawing $\mathbf{u}=\left[\begin{array}{l}1 \\ 2\end{array}\right], 2 \mathbf{u}=\left[\begin{array}{l}2 \cdot 1 \\ 2 \cdot 2\end{array}\right]=\left[\begin{array}{l}2 \\ 4\end{array}\right]$.

Ex Let $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$. Express $\mathbf{b}=\left[\begin{array}{l}3 \\ 0\end{array}\right]$ as linear combinations of \mathbf{v}_{1} and \mathbf{v}_{2}.
Sol. We start by drawing a net of parallelograms with sides \mathbf{v}_{1} and \mathbf{v}_{2}. Then we see how far we should go first in the \mathbf{v}_{1} and then in the \mathbf{v}_{2} direction to reach \mathbf{b}. We see that $\mathbf{b}=\mathbf{v}_{1}+2 \mathbf{v}_{2}$.

Ex Let $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{l}2 \\ 4\end{array}\right]$. Express $\mathbf{b}=\left[\begin{array}{l}6 \\ 0\end{array}\right]$ as linear combinations of \mathbf{v}_{1} and \mathbf{v}_{2}.
Sol. Since $\mathbf{v}_{2}=2 \mathbf{v}_{1}$ we can only reach vectors \mathbf{b} which are on the line $t \mathbf{v}_{1}$ for some t, but this can not be equal to be for any t since one of the components of \mathbf{b} vanishes.

Ex Let $\mathbf{a}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 3\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{c}4 \\ 2 \\ 14\end{array}\right], \mathbf{a}_{3}=\left[\begin{array}{c}3 \\ 6 \\ 10\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{c}-1 \\ 8 \\ -5\end{array}\right]$.
Determine if \mathbf{b} is a linear combination of $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$.
Sol \mathbf{b} is a linear combination of $\mathbf{a}_{1}, \mathbf{a}_{2}$ and \mathbf{a}_{3} if we can find scalars x_{1}, x_{2}, x_{3} so

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+x_{3} \mathbf{a}_{3}=\mathbf{b} .
$$

If we write it out we get the vector equation

$$
x_{1}\left[\begin{array}{l}
1 \\
0 \\
3
\end{array}\right]+x_{2}\left[\begin{array}{c}
4 \\
2 \\
14
\end{array}\right]+x_{3}\left[\begin{array}{c}
3 \\
6 \\
10
\end{array}\right]=\left[\begin{array}{c}
-1 \\
8 \\
-5
\end{array}\right] .
$$

If we add up the vectors to the left we get

$$
\left[\begin{array}{c}
x_{1}+4 x_{2}+3 x_{3} \\
2 x_{2}+6 x_{3} \\
3 x_{1}+14 x_{2}+10 x_{3}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
8 \\
-5
\end{array}\right] .
$$

i.e. we get a linear system of equations

$$
\begin{gathered}
x_{1}+4 x_{2}+3 x_{3}=-1 \\
2 x_{2}+6 x_{3}=8 \\
3 x_{1}+14 x_{2}+10 x_{3}=-5
\end{gathered}
$$

The corresponding augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & 4 & 3 & -1 \\
0 & 2 & 6 & 8 \\
3 & 14 & 10 & -5
\end{array}\right] \Leftrightarrow\left[\begin{array}{cccc}
1 & 4 & 3 & -1 \\
0 & 2 & 6 & 8 \\
0 & 2 & 1 & -2
\end{array}\right](3)-3(1) \Leftrightarrow\left[\begin{array}{cccc}
1 & 4 & 3 & -1 \\
0 & 1 & 3 & 4 \\
0 & 2 & 1 & -2
\end{array}\right] \quad(2) / 2 \Leftrightarrow} \\
& \Leftrightarrow\left[\begin{array}{cccc}
1 & 4 & 3 & -1 \\
0 & 1 & 3 & 4 \\
0 & 0 & -5 & -10
\end{array}\right] \\
& (3)-2(2) \Leftrightarrow\left[\begin{array}{cccc}
1 & 4 & 3 & -1 \\
0 & 1 & 3 & 4 \\
0 & 0 & 1 & 2
\end{array}\right] \\
& \text { (3) } /(-5) \\
& \Leftrightarrow\left[\begin{array}{cccc}
1 & 0 & -9 & -17 \\
0 & 1 & 3 & 4 \\
0 & 0 & 1 & 2
\end{array}\right] \\
& (1)-4(2) \Leftrightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & -2 \\
0 & 0 & 1 & 2
\end{array}\right] \begin{array}{l}
(1)+9(3) \\
(2)-3(3)
\end{array} \\
& \text { i.e. we get the system } \\
& \text { and hence } \\
& x_{1} \quad=1 \\
& \begin{aligned}
x_{2} \quad & =-2 \\
x_{3} & =2
\end{aligned} \\
& \mathbf{b}=\mathbf{a}_{1}-2 \mathbf{a}_{2}+2 \mathbf{a}_{3}
\end{aligned}
$$

Note that $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$ and \mathbf{b} are columns of the augmented matrix $\left[\mathbf{a}_{1} \mathbf{a}_{2} \mathbf{a}_{3} \mathbf{b}\right]$. Hence solving the vector equation $\mathbf{b}=x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+x_{3} \mathbf{a}_{3}$ is the same as solving the linear system with augmented matrix $\left[\mathbf{a}_{1} \mathbf{a}_{2} \mathbf{a}_{3} \mathbf{b}\right]$.

In general the vector equation

$$
\mathbf{b}=x_{1} \mathbf{a}_{1}+\cdots+x_{k} \mathbf{a}_{k}
$$

has the same solution set as the linear system with augmented matrix

$$
\left[\begin{array}{llll}
\mathbf{a}_{1} & \cdots & \mathbf{a}_{k} & \mathbf{b}
\end{array}\right]
$$

i.e. \mathbf{b} can be generated as a linear combination of $\mathbf{a}_{1}, \cdots, \mathbf{a}_{k}$ if and only if there is a solution to the linear system with the corresponding augmented matrix.

Matrix Multiplication
Recall that the dot product of two vectors $\mathbf{w}=\left[w_{1} w_{2} \ldots w_{n}\right]$ and $\mathbf{v}=\left[\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right]$ is
One can think of linear system

$$
\begin{gather*}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \tag{3.1}\\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=b_{m}
\end{gather*}
$$

as a single vector equation in matrix form

$$
\begin{equation*}
A \mathbf{x}=\mathbf{b} \tag{3.2}
\end{equation*}
$$

where

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{i n} \\
& \vdots & & \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]
$$

and matrix multiplication $A \mathbf{x}$ of the $m \times n$ matrix A and the $n \times 1$ column vector \mathbf{x} is defined to be the $m \times 1$ column vector formed from the dot product of the row vectors $\mathbf{w}_{i}=\left[a_{i 1} a_{i 2} \ldots a_{i n}\right]$ of A with the column vector \mathbf{x} :

$$
A \mathbf{x}=\left[\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} \tag{3.3}\\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{w}_{1} \cdot \mathbf{x} \\
\mathbf{w}_{2} \cdot \mathbf{x} \\
\vdots \\
\mathbf{w}_{m} \cdot \mathbf{x}
\end{array}\right], \quad \text { if } \quad A=\left[\begin{array}{ccc}
-\mathbf{w}_{1} & - \\
- & \mathbf{w}_{2} & - \\
\vdots & \\
-\mathbf{w}_{m} & -
\end{array}\right]
$$

Then (3.2) says that the column vector $A \mathbf{x}$ is equal to the column vector \mathbf{b}. (3.1) just says that the components of these column vectors are equal.

The product (3.3) can be written as linear combination of the column vectors \mathbf{v}_{i} of A

$$
A \mathbf{x}=x_{1}\left[\begin{array}{c}
a_{11} \tag{3.4}\\
a_{21} \\
\vdots \\
a_{m 1}
\end{array}\right]+x_{2}\left[\begin{array}{c}
a_{12} \\
a_{22} \\
\vdots \\
a_{m 2}
\end{array}\right]+\cdots+x_{n}\left[\begin{array}{c}
a_{1 n} \\
a_{2 n} \\
\vdots \\
a_{m n}
\end{array}\right]=x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{n} \mathbf{v}_{m}, \quad \text { if } \quad A=\left[\begin{array}{cc}
\mid & \mid \\
\mathbf{v}_{1} \mathbf{v}_{2} \cdots \mathbf{v}_{m} \\
\mid & \mid
\end{array}\right]
$$

(3.4) is multiplication by columns. (3.3) is multiplication by rows.

Multiplying by the $m \times n$ matrix A hence defines a map $\mathbf{f}: \mathbf{R}^{n} \ni \mathbf{x} \rightarrow A \mathbf{x} \in \mathbf{R}^{m}$, for each $n \times 1$ column vector \mathbf{x} we get an $m \times 1$ column vector $A \mathbf{x}$ defined by (3.3). The map is linear; $A(\mathbf{x}+\mathbf{y})=A \mathbf{x}+A \mathbf{y}, A(\lambda \mathbf{x})=\lambda A \mathbf{x}$. All linear maps are of this form.

1.5 in Lay et al Solution sets of Linear systems

A homogeneous system is a system of the form

$$
A \mathrm{x}=\mathbf{0}
$$

where A is an $m \times n$ matrix and $\mathbf{0}$ is the zero vector in \mathbf{R}^{m}.
A homogeneous system always has the trivial solution $\mathbf{x}=\mathbf{0}$ so its consistent.
Consistent systems with a free variable have infinitely many solutions.
A homogeneous system has a nontrivial solution $\mathbf{x} \neq \mathbf{0}$ if and only if it has free variables.
Ex 1 Describe the solution set of the system $\begin{gathered}x_{1}+2 x_{2}-3 x_{3}=0 \\ 4 x_{1}+8 x_{2}-11 x_{3}=0\end{gathered}$
Sol There is at least one free variable since there are 2 equations in 3 variables.

$$
\begin{gathered}
{\left[\begin{array}{cccc}
1 & 2 & -3 & 0 \\
4 & 8 & -11 & 0
\end{array}\right] \sim-4(1)\left[\begin{array}{cccc}
1 & 2 & -3 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \sim+3(1)\left[\begin{array}{llll}
1 & 2 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]} \\
x_{1}+2 x_{2}=0 \\
x_{3}=0 \quad \Leftrightarrow \quad x_{1}=-2 x_{2}, \quad x_{2}=\text { free, } x_{3}=0 \\
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-2 x_{2} \\
x_{2} \\
0
\end{array}\right]=x_{2}\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right]=x_{2} \mathbf{v}
\end{gathered}
$$

This is the parametric equation of a line through $\mathbf{0}$ in the direction of \mathbf{v}
Ex 2 Determine the solution set of $\begin{gathered}x_{1}+2 x_{2}-3 x_{3}=0 \\ 4 x_{1}+8 x_{2}-11 x_{3}=2\end{gathered}$
Sol $\left[\begin{array}{cccc}1 & 2 & -3 & 0 \\ 4 & 8 & -11 & 2\end{array}\right] \sim-4(1)\left[\begin{array}{cccc}1 & 2 & -3 & 0 \\ 0 & 0 & 1 & 2\end{array}\right] \sim+3(1)\left[\begin{array}{llll}1 & 2 & 0 & 6 \\ 0 & 0 & 1 & 2\end{array}\right]$

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
6-2 x_{2} \\
x_{2} \\
2
\end{array}\right]=\left[\begin{array}{l}
6 \\
0 \\
2
\end{array}\right]+x_{2}\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right]=\mathbf{p}+x_{2} \mathbf{v}, \quad x_{2} \text { is a free parameter. }
$$

This is the parametric equation of a line through \mathbf{p} in the direction of \mathbf{v}, parallel to Ex 1.
If the nonhomogeneous equation $A \mathbf{x}=\mathbf{b}$ is consistent its solution set is parallel to the solution set to the homogeneous equation $A \mathbf{x}=\mathbf{0}$.

Th Suppose $A \mathbf{x}=\mathbf{b}$ is consistent and let \mathbf{p} be a solution. Then any other solution $\mathbf{x}=\mathbf{p}+\mathbf{v}_{h}$, where \mathbf{v}_{h} is a solution to $A \mathbf{v}_{h}=\mathbf{0}$.
Pf Since matrix multiplication is linear $A\left(\mathbf{p}+\mathbf{v}_{h}\right)=A \mathbf{p}+A \mathbf{v}_{h}=\mathbf{b}$.
Ex Describe the solution set to $x_{1}-2 x_{2}-2 x_{3}=b$ for $b=0,1$.
Sol x_{2} and x_{3} are free variables

$$
\mathbf{x}=\left[\begin{array}{c}
b+2 x_{2}+2 x_{3} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
b \\
0 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]=\mathbf{p}+x_{2} \mathbf{v}_{1}+x_{3} \mathbf{v}_{2}
$$

Since x_{2} and x_{3} are free parameters this is the parametric vector equation of a plane through \mathbf{p} and parallel to the vectors \mathbf{v}_{1} and \mathbf{v}_{2}.
If $b=0$ its the plane spanned by $\mathbf{v}_{1}, \mathbf{v}_{2}$ and if $b \neq 0$ it is a plane parallel to this plane.

Summary and Conceptual Questions

We can now write a linear system with augmented matrix

$$
\left[\begin{array}{cccc}
2 & 3 & 4 & 9 \tag{3.5}\\
-3 & 1 & 0 & -2
\end{array}\right]
$$

as a System of Linear Equations

$$
\begin{align*}
& 2 x_{1}+3 x_{2}+4 x_{3}=9 \\
& -3 x_{1}+x_{2}=-2 \tag{3.6}
\end{align*}
$$

as a Vector Equation

$$
x_{1}\left[\begin{array}{c}
2 \tag{3.7}\\
-3
\end{array}\right]+x_{2}\left[\begin{array}{l}
3 \\
1
\end{array}\right]+x_{3}\left[\begin{array}{l}
4 \\
0
\end{array}\right]=\left[\begin{array}{c}
9 \\
-2
\end{array}\right]
$$

or as a Matrix Equation

$$
\left[\begin{array}{ccc}
2 & 3 & 4 \\
-3 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
9 \\
-2
\end{array}\right]
$$

Viewing the system as the intersection of planes (3.6) is called the row picture since each equation corresponds to a row of the augmented matrix (3.5).
Viewing the system as a linear combination of vectors (3.7) is called the column picture since each vector corresponds to a column of the augmented matrix (3.5).

Matrix multiplication can be calculated in two ways corresponding to the row picture:
$\left[\begin{array}{cc}1 & -4 \\ 3 & 2 \\ 0 & 5\end{array}\right]\left[\begin{array}{c}7 \\ -6\end{array}\right]=\left[\begin{array}{c}1 \cdot 7+(-4) \cdot(-6) \\ 3 \cdot 7+2 \cdot(-6) \\ 0 \cdot 7+5 \cdot(-6)\end{array}\right]=\left[\begin{array}{c}31 \\ 9 \\ -30\end{array}\right]$.
respective; y the column picture:

$$
\left[\begin{array}{cc}
1 & -4 \\
3 & 2 \\
0 & 5
\end{array}\right]\left[\begin{array}{c}
7 \\
-6
\end{array}\right]=7\left[\begin{array}{l}
1 \\
3 \\
0
\end{array}\right]+-6\left[\begin{array}{c}
-4 \\
2 \\
5
\end{array}\right]=\left[\begin{array}{c}
7 \\
21 \\
0
\end{array}\right]+\left[\begin{array}{c}
24 \\
-12 \\
-30
\end{array}\right]=\left[\begin{array}{c}
31 \\
9 \\
-30
\end{array}\right] .
$$

An $n \times n$ matrix A gives a linear map $\mathbb{R}^{n} \ni \mathbf{x} \rightarrow A \mathbf{x} \in \mathbb{R}^{n}$, i.e. $A(\mathbf{x}+\mathbf{y})=A \mathbf{x}+A \mathbf{y}, A(\lambda \mathbf{x})=\lambda A(\mathbf{x})$.
If A is an $n \times n$ matrix, we have learned that the linear system

$$
A \mathbf{x}=\mathbf{b}
$$

can be solved uniquely for everyb iff the reduced row echelon form has only l's in the diagonal.
An $n \times n$ matrix B is called an inverse of an $n \times n A$ if the solution to $A \mathbf{x}=\mathbf{b}$ can be give as

$$
\mathbf{x}=B \mathbf{b}
$$

Question When does an $n \times n$ matrix A have an inverse? Hint: Try the 2×2 case.
The system $A \mathbf{x}=\mathbf{0}$ is called the homogeneous equation:

$$
A \mathrm{x}=\mathbf{0}
$$

It always has the trivial solution $\mathbf{x}=\mathbf{0}$. A solution $\mathbf{x} \neq \mathbf{0}$ is called nontrivial.
Question Let A be an $n \times n$ matrix. When does the system $A \mathbf{x}=\mathbf{0}$ have a nontrivial solution?

