
30. Lecture 30: 8.3 Polar Decomposition and Singular Value Decomposition

In the book the singular value decomposition is proven in detail and the polar decomposition
is only outlined in the exercises. One can prove one from the other in any order. Here we first
prove the polar decomposition since it is more natural though the proof is more abstract.

A complex number can be written in polar form z = r eiθ. Similarly we can write:
Th (Polar Decomposition) If A is an n×n matrix then there is an orthogonal n×n matrix
Q and a symmetric positive definite n×n matrix P such that A = QP .
Pf The are several steps to the proof:
For a complex number we first define r2 = |z|2 = zz and then we define eiθ = z/|z|.

Lemma There is a unique positive definite symmetric matrix P such that P 2 = ATA.
We have ‖Pv‖=‖Av‖, for all v.
Pf Since the matrix ATA is symmetric it can be diagonalized ATA = V DV T, where V
is orthogonal and D = diag{λ1, . . . , λn}. Here λ1 ≥ · · · ≥ λn ≥ 0 are the eigenvalues
of the positive definite matrix ATA. Hence if we define σi =

√
λi, for i = 1, . . . , n and

Σ = diag{σ1, . . . , σn} then Σ2 = D so P =V ΣV T satisfy P 2 =V ΣV TV ΣV T =V Σ2V T =ATA.
We have ‖Av‖2 = 〈Av, Av〉 = 〈ATAv,v〉 = 〈P 2v,v〉 = 〈Pv, Pv〉 = ‖Pv‖2.

Given P as in the lemma we show that there is a matrix Q such that QP = A and QTQ = I.
If P is invertible we define Q=AP−1 so QTQ=(P−1)TATAP−1 =(P−1)TP 2PP−1 =I.
In general we want to define a linear map Q1 : ImP → ImA by

Q1(Pv) = Av, for all v ∈ Rn.

We need to show that Q1 is well defined, i.e. if Pv1 =Pv2 then Av1 =Av2. By the lemma

‖Av1 − Av2‖ = ‖A(v1 − v2)‖ = ‖P (v1 − v2)‖ = ‖Pv1 − Pv2‖.
It follows that Q1 is well defined and by the lemma

‖Q1u‖ = ‖u‖, for u ∈ ImP.

In particular Q1 is invertible and by the fundamental theorem of linear algebra

dim ImP = dim ImA.
This implies that

dim(ImP )⊥ = dim(ImA)⊥.

We can hence pick an orthonormal basis e1, . . . , em for (ImP )⊥ and an orthonormal basis
f1, . . . , fm for (ImA)⊥ and define a map by

Q2

(
a1e1 + · · ·+ amem

)
= a1f1 + · · ·+ amfm.

Then ‖Q2w‖ = ‖w‖, for w ∈ (ImP )⊥. In general we can uniquely decompose any x ∈ Rn:

x = u + w, where u ∈ ImP, w ∈ (ImP )⊥,
and define

Qx = Q1u +Q2w,

For each v we have
Q(Pv) = Q1(Pv),

since Pv ∈ ImP and hence has bo component in (ImP )⊥. By Pythagorean theorem

‖Qv‖2 = ‖Q1u +Q2w‖2 = ‖Q1u‖2 + ‖Q2w‖2 = ‖u‖2 + ‖w‖2 = ‖v‖2.
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Th (Singular Value Decomposition) Any m× n matrix A can be factored into

A = UΣV T ,

where U is an orthogonal m×m , V is an orthogonal n×n and Σ is a diagonal m×n matrix.
The columns of U are eigenvectors of AAT and the columns of V are eigenvectors of ATA.
The r singular values on the diagonal of Σ are the square roots of the nonzero eigenvalues
of AAT and ATA.

Remarks For positive definite symmetric n×n matrices, the decomposition reduces to QDQT.
In general for n×n matrices it follows from the polar decomposition and the spectral theorem.
On the other hand the polar decomposition follows from the singular value decomposition.

Proof Let r ≤ min (m,n) be the rank of A which is also the rank of ATA and of AAT .
Since ATA is symmetric it has a complete set of orthonormal eigenvectors v1, . . . ,vn. Number

them so the first r corresponds to the nonzero eigenvalues σ2
1, . . . , σ

2
r . Set V =

 | |
v1 · · ·vn
| |

.
Note that AAT (Avi) = A(ATAvi) = σ2

iAvi, for i=1, . . . , r. For i=1, . . . , r let ui be equal to
Avi normalized so ‖ui‖ = 1, by the lemma Avi = σiui. For i=r + 1, . . . ,m let ui, be other

eigenvectors of AAT so that u1, . . . ,um form an orthonormal basis and set U=

 | |
u1 · · ·um
| |

.
Let Σ be the m×n matrix with σ1, . . . , σr in the diagonal and zero elsewhere, i.e. Σ = (σij)

where σii=σi, for i=1, . . . , r and σij =0 if i 6=j and σii=0, if i>r; Σ=


σ1 0 · · ·
0

. . . . . .
...

. . . σr

.
It remain to prove that A=UΣV T or AV = UΣ.
In fact Avi = σiui, for i = 1, . . . , r, and Avi = 0, for i = r + 1, . . . , n, so

A

 | | | |
v1 · · ·vr vr+1 · · ·vn
| | | |

=

 | | | |
σ1u1 · · ·σrur 0 · · · 0
| | | |

=

 | | | |
u1 · · ·ur ur+1 · · ·um
| | | |



σ1 0 · · ·
0

. . . . . .
...

. . . σr

.
Applications of SVD

One can approximate large matrices by smaller rank ones by setting small singular values 0.
One can construct a pseudoinverse A+ = V Σ+UT , where Σ+ is obtained from Σ by
inverting the nonzero singular values in the diagonal.
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Ex Find a singular value decomposition for A =

[
1 1 −1
1 1 −1

]
.

Sol The matrix ATA =

 2 2 −2
2 2 −2
−2 −2 2

 has rank 1 so it must have a two dimensional nullspace

so 0 is a double eigenvalue. It the easy to find that the eigenvalues are λ1 = 6, λ2 = λ3 = 0.

The corresponding orthonormal eigenvectors are v1 =
1√
3

 1
1
−1

, v2 =
1√
2

 1
−1
0

, v3 =
1√
6

1
1
2

.
The last two are found pick two vectors satisfying x+y−2z = 0 and applying Gram-Schmidt

to get an orthonormal basis. Let u1 = Av1/
√

6 =
1√
2

[
1
1

]
, and let u2 =

1√
2

[
1
−1

]
be a vector

orthogonal to u1. Set U =

[ p p
u1 u2p p

]
, Σ=

[
σ1 0 0
0 0 0

]
. and V =

 | | |v1 v2 v3

| | |

.
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Summary

A complex number can be written in polar form z = r eiθ. Similarly we can write:
Th (Polar Decomposition) If A is an n×n matrix then there is an orthogonal n×n matrix
Q and a symmetric positive definite n×n matrix P such that A = QP .
Lemma There is a unique positive definite symmetric matrix P such that P 2 = ATA.
We have ‖Pv‖=‖Av‖, for all v.
Pf Since the matrix ATA is symmetric it can be diagonalized ATA = V DV T, where V
is orthogonal and D = diag{λ1, . . . , λn}. Here λ1 ≥ · · · ≥ λn ≥ 0 are the eigenvalues
of the positive definite matrix ATA. Hence if we define σi =

√
λi, for i = 1, . . . , n and

Σ = diag{σ1, . . . , σn} then Σ2 = D so P =V ΣV T satisfy P 2 =V ΣV TV ΣV T =V Σ2V T =ATA.
We have ‖Av‖2 = 〈Av, Av〉 = 〈ATAv,v〉 = 〈P 2v,v〉 = 〈Pv, Pv〉 = ‖Pv‖2.
Pf For the proof of the polar decomposition we define a linear map Q1 : ImP → ImA by

Q1(Pv) = Av, for all v ∈ Rn.

so by the lemma ‖Q1u‖ = ‖u‖, for u ∈ ImP , and a linear map Q2 : (ImP )⊥ → (ImA)⊥ so
‖Q2w‖ = ‖w‖, for w ∈ (ImP )⊥. In general we can uniquely write any x = u + w, where
u ∈ ImP and w ∈ (ImP )⊥, and we set Q(x) = Q1u+Q2w. Then Q(Pv) = Q1(Pv) = APv.

Th (Singular Value Decomposition) Any m× n matrix A can be factored into

A = UΣV T ,

where U is an orthogonal m×m , V is an orthogonal n×n and Σ is a diagonal m×n matrix.
The columns of U are eigenvectors of AAT and the columns of V are eigenvectors of ATA.
Let r be the rank of A. The first r entries on the diagonal of Σ are the square roots of the
nonzero eigenvalues of AAT and ATA, called the singular values of A.
Remarks For positive definite symmetric n×n matrices, the decomposition reduces to QDQT.
In general for n×n matrices it follows from the polar decomposition and the spectral theorem.
On the other hand the polar decomposition follows from the singular value decomposition.
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.
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.
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